ﻻ يوجد ملخص باللغة العربية
Let V(KG) be a normalised unit group of the modular group algebra of a finite p-group G over the field K of p elements. We introduce a notion of symmetric subgroups in V(KG) as subgroups invariant under the action of the classical involution of the group algebra KG. We study properties of symmetric subgroups and construct a counterexample to the conjecture by V.Bovdi, which states that V(KG)=<G,S*>, where S* is a set of symmetric units of V(KG).
Let p be a prime, K a field of characteristic p, G a locally finite p-group, KG the group algebra, and V the group of the units of KG with augmentation 1. The anti-automorphism gmapsto g^{-1} of G extends linearly to KG; this extension leaves V setwi
Let V_* be the normalized unitary subgroup of the modular group algebra FG of a finite p-group G over a finite field F with the classical involution *. We investigate the isomorphism problem for the group V_*, that asks when the group V_* is determin
A p-group is called powerful if every commutator is a product of pth powers when p is odd and a product of fourth powers when p=2. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized uni
We give a full description of locally finite p-groups G such that the normalized group of units V(FG) of the group algebra FG over a field F of characteristic p has exponent 4.
Quantum symmetric algebras (or noncommutative polynomial rings) arise in many places in mathematics. In this article we find the multiplicative structure of their Hochschild cohomology when the coefficients are in an arbitrary bimodule algebra. When