ﻻ يوجد ملخص باللغة العربية
A procedure to solve few-body problems which is based on an expansion over a small parameter is developed. The parameter is the ratio of potential energy to kinetic energy in the subspace of states having not small hyperspherical quantum numbers, K>K_0. Dynamic equations are reduced perturbatively to those in the finite subspace with K le K_0. The contribution from the subspace with K>K_0 is taken into account in a closed form, i.e. without an expansion over basis functions.
A procedure to solve few-body problems is developed which is based on an expansion over a small parameter. The parameter is the ratio of potential energy to kinetic energy for states having not small hyperspherical quantum numbers, K>K_0. Dynamic equ
The method of integral transforms is reviewed. In the framework of this method reaction observables are obtained with the bound--state calculation techniques. New developments are reported.
A convenient framework for dealing with hadron structure and hadronic physics in the few-GeV energy range is relativistic quantum mechanics. Unlike relativistic quantum field theory, one deals with a fixed, or at least restricted number of degrees of
A non-conventional approach to calculating reactions in quantum mechanics is presented. Reaction observables are obtained with bound state calculation techniques. The accuracy of the method to calculate few-nucleon response functions is discussed.
A method to calculate reactions in quantum mechanics is outlined. It is advantageous, in particular, in problems with many open channels of various nature i.e. when energy is not low. In the method there is no need to specify reaction channels in a d