ترغب بنشر مسار تعليمي؟ اضغط هنا

FLCT: A Fast, Efficient Method for Performing Local Correlation Tracking

69   0   0.0 ( 0 )
 نشر من قبل Brian Welsch
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the computational techniques employed in the recently updated Fourier local correlation tracking (FLCT) method. The FLCT code is then evaluated using a series of simple, 2D, known flow patterns that test its accuracy and characterize its errors.

قيم البحث

اقرأ أيضاً

Federated Averaging (FedAvg, also known as Local-SGD) (McMahan et al., 2017) is a classical federated learning algorithm in which clients run multiple local SGD steps before communicating their update to an orchestrating server. We propose a new fede rated learning algorithm, FedPAGE, able to further reduce the communication complexity by utilizing the recent optimal PAGE method (Li et al., 2021) instead of plain SGD in FedAvg. We show that FedPAGE uses much fewer communication rounds than previous local methods for both federated convex and nonconvex optimization. Concretely, 1) in the convex setting, the number of communication rounds of FedPAGE is $O(frac{N^{3/4}}{Sepsilon})$, improving the best-known result $O(frac{N}{Sepsilon})$ of SCAFFOLD (Karimireddy et al.,2020) by a factor of $N^{1/4}$, where $N$ is the total number of clients (usually is very large in federated learning), $S$ is the sampled subset of clients in each communication round, and $epsilon$ is the target error; 2) in the nonconvex setting, the number of communication rounds of FedPAGE is $O(frac{sqrt{N}+S}{Sepsilon^2})$, improving the best-known result $O(frac{N^{2/3}}{S^{2/3}epsilon^2})$ of SCAFFOLD (Karimireddy et al.,2020) by a factor of $N^{1/6}S^{1/3}$, if the sampled clients $Sleq sqrt{N}$. Note that in both settings, the communication cost for each round is the same for both FedPAGE and SCAFFOLD. As a result, FedPAGE achieves new state-of-the-art results in terms of communication complexity for both federated convex and nonconvex optimization.
68 - Andrew Moore 2000
We present here a new algorithm for the fast computation of N-point correlation functions in large astronomical data sets. The algorithm is based on kdtrees which are decorated with cached sufficient statistics thus allowing for orders of magnitude s peed-ups over the naive non-tree-based implementation of correlation functions. We further discuss the use of controlled approximations within the computation which allows for further acceleration. In summary, our algorithm now makes it possible to compute exact, all-pairs, measurements of the 2, 3 and 4-point correlation functions for cosmological data sets like the Sloan Digital Sky Survey (SDSS; York et al. 2000) and the next generation of Cosmic Microwave Background experiments (see Szapudi et al. 2000).
In this article, a new method is discussed for the calibration and monitoring of photomultiplier tubes (PMTs). This method is based on a Discrete Fourier Transform (DFT) and it is fast and general so that it can be used in cases where an analytical m odel of the PMT response is not available. The DFT approach is employed for the absolute calibration of the Hamamatsu R1408 photomultiplier tube. It should be noted that the R1408 PMTs do not show a sharp peak at the single photoelectron distribution and gain determination via conventional methods is often unattainable. Here, we show that the DFT technique, coupled with a gamma function model for the single photoelectron response, produces rigorous calibration results and it can be used for gain determination with a good accuracy.
This paper introduces temporally local metrics for Multi-Object Tracking. These metrics are obtained by restricting existing metrics based on track matching to a finite temporal horizon, and provide new insight into the ability of trackers to maintai n identity over time. Moreover, the horizon parameter offers a novel, meaningful mechanism by which to define the relative importance of detection and association, a common dilemma in applications where imperfect association is tolerable. It is shown that the historical Average Tracking Accuracy (ATA) metric exhibits superior sensitivity to association, enabling its proposed local variant, ALTA, to capture a wide range of characteristics. In particular, ALTA is better equipped to identify advances in association independent of detection. The paper further presents an error decomposition for ATA that reveals the impact of four distinct error types and is equally applicable to ALTA. The diagnostic capabilities of ALTA are demonstrated on the MOT 2017 and Waymo Open Dataset benchmarks.
In this paper we present a new approach for efficient regression based object tracking which we refer to as Deep- LK. Our approach is closely related to the Generic Object Tracking Using Regression Networks (GOTURN) framework of Held et al. We make t he following contributions. First, we demonstrate that there is a theoretical relationship between siamese regression networks like GOTURN and the classical Inverse-Compositional Lucas & Kanade (IC-LK) algorithm. Further, we demonstrate that unlike GOTURN IC-LK adapts its regressor to the appearance of the currently tracked frame. We argue that this missing property in GOTURN can be attributed to its poor performance on unseen objects and/or viewpoints. Second, we propose a novel framework for object tracking - which we refer to as Deep-LK - that is inspired by the IC-LK framework. Finally, we show impressive results demonstrating that Deep-LK substantially outperforms GOTURN. Additionally, we demonstrate comparable tracking performance to current state of the art deep-trackers whilst being an order of magnitude (i.e. 100 FPS) computationally efficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا