ترغب بنشر مسار تعليمي؟ اضغط هنا

The CODEX-ESPRESSO experiment: cosmic dynamics, fundamental physics, planets and much more..

414   0   0.0 ( 0 )
 نشر من قبل Stefano Cristiani
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CODEX, a high resolution, super-stable spectrograph to be fed by the E-ELT, the most powerful telescope ever conceived, will for the first time provide the possibility of directly measuring the change of the expansion rate of the Universe with time and much more, from the variability of fundamental constants to the search for other earths. A study for the implementation at the VLT of a precursor of CODEX, dubbed ESPRESSO, is presently carried out by a collaboration including ESO, IAC, INAF, IoA Cambridge and Observatoire de Geneve. The present talk is focused on the cosmological aspects of the experiment.

قيم البحث

اقرأ أيضاً

CODEX and ESPRESSO are concepts for ultra-stable, high-resolution spectrographs at the E-ELT and VLT, respectively. Both instruments are well motivated by distinct sets of science drivers. However, ESPRESSO will also be a stepping stone towards CODEX both in a scientific as well as in a technical sense. Here we discuss this role of ESPRESSO with respect to one of the most exciting CODEX science cases, i.e. the dynamical determination of the cosmic expansion history.
A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic (psim -rho), very smooth form of energy called ``dark energy accounting for about 75% of the Universe. The ``simplest explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.
89 - Anthony Challinor 2006
The temperature anisotropies and polarization of the cosmic microwave background (CMB) radiation provide a window back to the physics of the early universe. They encode the nature of the initial fluctuations and so can reveal much about the physical mechanism that led to their generation. In this contribution we review what we have learnt so far about early-universe physics from CMB observations, and what we hope to learn with a new generation of high-sensitivity, polarization-capable instruments.
High-energy cosmic neutrinos can reveal new fundamental particles and interactions, probing energy and distance scales far exceeding those accessible in the laboratory. This white paper describes the outstanding particle physics questions that high-e nergy cosmic neutrinos can address in the coming decade. A companion white paper discusses how the observation of cosmic neutrinos can address open questions in astrophysics. Tests of fundamental physics using high-energy cosmic neutrinos will be enabled by detailed measurements of their energy spectrum, arrival directions, flavor composition, and timing.
The astrophysical neutrinos discovered by IceCube have the highest detected neutrino energies --- from TeV to PeV --- and likely travel the longest distances --- up to a few Gpc, the size of the observable Universe. These features make them naturally attractive probes of fundamental particle-physics properties, possibly tiny in size, at energy scales unreachable by any other means. The decades before the IceCube discovery saw many proposals of particle-physics studies in this direction. Today, those proposals have become a reality, in spite of astrophysical unknowns. We will showcase examples of doing fundamental neutrino physics at these scales, including some of the most stringent tests of physics beyond the Standard Model. In the future, larger neutrino energies --- up to tens of EeV --- could be observed with larger detectors and further our reach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا