ﻻ يوجد ملخص باللغة العربية
The electronic structure and properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$ have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The local density approximation (LDA)+$U$ and the generalized gradient approximation (GGA)+$U$ formalism have been used to account for the strong on-site Coulomb repulsion among the localized Pu $5f$ electrons. We discuss how the properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$ are affected by the choice of $U$ as well as the choice of exchange-correlation potential. Also, oxidation reaction of Pu$_{2}$O$_{3}$, leading to formation of PuO$_{2}$, and its dependence on $U$ and exchange-correlation potential have been studied. Our results show that by choosing an appropriate $U$ it is promising to correctly and consistently describe structural, electronic, and thermodynamic properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$, which enables it possible the modeling of redox process involving Pu-based materials.
The aim of this review article is to assess the descriptive capabilities of the Hubbard-rooted LDA+U method and to clarify the conditions under which it can be expected to be most predictive. The paper illustrates the theoretical foundation of LDA+U
Recent experiments reported giant magnetoresistance at room temperature in LaOMnAs. Here a density functional theory calculation is performed to investigate magnetic properties of LaOMnAs. The ground state is found to be the G-type antiferromagnetic
Rare-earth nickelates R$^{3+}$Ni$^{3+}$O$_3$ (R=Lu-Pr, Y) show a striking metal-insulator transition in their bulk phase whose temperature can be tuned by the rare-earth radius. These compounds are also the parent phases of the newly identified infin
We present a first-principles investigation of the structural, electronic, and magnetic properties of pyrolusite ($beta$-MnO$_2$) using conventional and extended Hubbard-corrected density-functional theory (DFT+$U$ and DFT+$U$+$V$). The onsite $U$ an
First-principles calculations were performed to investigate the ferroelectric properties of barium titanate and bismuth ferrite, as well as phonon dispersion of BaTiO3, using density functional theory and density functional perturbation theory. Resul