ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles LDA+U and GGA+U study of plutonium oxides

310   0   0.0 ( 0 )
 نشر من قبل Ping Zhang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure and properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$ have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The local density approximation (LDA)+$U$ and the generalized gradient approximation (GGA)+$U$ formalism have been used to account for the strong on-site Coulomb repulsion among the localized Pu $5f$ electrons. We discuss how the properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$ are affected by the choice of $U$ as well as the choice of exchange-correlation potential. Also, oxidation reaction of Pu$_{2}$O$_{3}$, leading to formation of PuO$_{2}$, and its dependence on $U$ and exchange-correlation potential have been studied. Our results show that by choosing an appropriate $U$ it is promising to correctly and consistently describe structural, electronic, and thermodynamic properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$, which enables it possible the modeling of redox process involving Pu-based materials.



قيم البحث

اقرأ أيضاً

The aim of this review article is to assess the descriptive capabilities of the Hubbard-rooted LDA+U method and to clarify the conditions under which it can be expected to be most predictive. The paper illustrates the theoretical foundation of LDA+U and prototypical applications to the study of correlated materials, discusses the most relevant approximations used in its formulation, and makes a comparison with other approaches also developed for similar purposes. Open issues of the method are also discussed, including the calculation of the electronic couplings (the Hubbard U), the precise expression of the corrective functional and the possibility to use LDA+U for other classes of materials. The second part of the article presents recent extensions to the method and illustrates the significant improvements they have obtained in the description of several classes of different systems. The conclusive section finally discusses possible future developments of LDA+U to further enlarge its predictive power and its range of applicability.
146 - Shuai Dong , Wei Li , Xin Huang 2013
Recent experiments reported giant magnetoresistance at room temperature in LaOMnAs. Here a density functional theory calculation is performed to investigate magnetic properties of LaOMnAs. The ground state is found to be the G-type antiferromagnetic order within the $ab$ plane but coupled ferromagnetically between planes, in agreement with recent neutron investigations. The electronic band structures suggest an insulating state which is driven by the particular G-type magnetic order, while a metallic state accompanies the ferromagnetic order. This relation between magnetism and conductance may be helpful to qualitatively understand the giant magnetoresistance effects.
Rare-earth nickelates R$^{3+}$Ni$^{3+}$O$_3$ (R=Lu-Pr, Y) show a striking metal-insulator transition in their bulk phase whose temperature can be tuned by the rare-earth radius. These compounds are also the parent phases of the newly identified infin ite layer RNiO2 superconductors. Although intensive theoretical works have been devoted to understand the origin of the metal-insulator transition in the bulk, there have only been a few studies on the role of hole and electron doping by rare-earth substitutions in RNiO$_3$ materials. Using first-principles calculations based on density functional theory (DFT) we study the effect of hole and electron doping in a prototypical nickelate SmNiO3. We perform calculations without Hubbard-like U potential on Ni 3d levels but with a meta-GGA better amending self-interaction errors. We find that at low doping, polarons form with intermediate localized states in the band gap resulting in a semiconducting behavior. At larger doping, the intermediate states spread more and more in the band gap until they merge either with the valence (hole doping) or the conduction (electron doping) band, ultimately resulting in a metallic state at 25% of R cation substitution. These results are reminiscent of experimental data available in the literature and demonstrate that DFT simulations without any empirical parameter are qualified for studying doping effects in correlated oxides and to explore the mechanisms underlying the superconducting phase of rare-earth nickelates.
We present a first-principles investigation of the structural, electronic, and magnetic properties of pyrolusite ($beta$-MnO$_2$) using conventional and extended Hubbard-corrected density-functional theory (DFT+$U$ and DFT+$U$+$V$). The onsite $U$ an d intersite $V$ Hubbard parameters are computed using linear-response theory in the framework of density-functional perturbation theory. We show that while the inclusion of the onsite $U$ is crucial to describe the localized nature of the Mn($3d$) states, the intersite $V$ is key to capture accurately the strong hybridization between neighboring Mn($3d$) and O($2p$) states. In this framework, we stabilize the simplified collinear antiferromagnetic (AFM) ordering (suggested by the Goodenough-Kanamori rule) that is commonly used as an approximation to the experimentally-observed noncollinear screw-type spiral magnetic ordering. A detailed investigation of the ferromagnetic and of other three collinear AFM spin configurations is also presented. The findings from Hubbard-corrected DFT are discussed using two kinds of Hubbard manifolds - nonorthogonalized and orthogonalized atomic orbitals - showing that special attention must be given to the choice of the Hubbard projectors, with orthogonalized manifolds providing more accurate results than nonorthogonalized ones within DFT+$U$+$V$. This work paves the way for future studies of complex transition-metal compounds containing strongly localized electrons in the presence of pronounced covalent interactions.
144 - Hong-Jian Feng 2014
First-principles calculations were performed to investigate the ferroelectric properties of barium titanate and bismuth ferrite, as well as phonon dispersion of BaTiO3, using density functional theory and density functional perturbation theory. Resul ts show that the strong hybridization of Ti-O and Bi-O lead to the corresponding mechanisms for stabilizing the distorted structure. The spontaneous polarization of 59.4 mu C/cm2 and 27.6 mu C/cm2 were calculated for BiFeO3 and BaTiO3 respectively, using berry phase method within the modern theory of polarization. The stereochemical activity of Bi-6s long-pair, which was the driven mechanism for ferroelectricity in BiFeO3, was able to produce greater polarization than the Ti off-centring displacement in BaTiO3. New multiferroic perovskite type materials combined with these two ferroelectric instabilities were predicted to have a better ferromagnetic ordering in comparison with BiFeO3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا