ﻻ يوجد ملخص باللغة العربية
The spin chain formulation of the operator spectrum of the N=4 super Yang-Mills theory is haunted by the problem of ``wrapping, i.e. the inapplicability of the formalism for short spin chain length at high loop-order. The first instance of wrapping concerns the fourth anomalous dimension of the Konishi operator. While we do not obtain this number yet, we lay out an operational scheme for its calculation. The approach passes through a five- and six-loop sector. We show that all but one of the Feynman integrals from this sector are related to five master graphs which ought to be calculable by the method of partial integration. The remaining supergraph is argued to be vanishing or finite; a numerical treatment should be possible. The number of numerator terms remains small even if a further four-loop sector is included. There is no need for infrared rearrangements.
We present a calculation of the four-loop anomalous dimension of the SU(2) sector Konishi operator in N=4 SYM, as an example of wrapping corrections to the known result for long operators. We use the known dilatation operator at four loops acting on
We present a new method for computing the Konishi anomalous dimension in N=4 SYM at weak coupling. It does not rely on the conventional Feynman diagram technique and is not restricted to the planar limit. It is based on the OPE analysis of the four-p
We revisit the calculation of instanton effects in correlation functions in ${cal N}=4$ SYM involving the Konishi operator and operators of twist two. Previous studies revealed that the scaling dimensions and the OPE coefficients of these operators d
We compute the full dimension of Konishi operator in planar N=4 SYM theory it for a wide range of couplings, from weak to strong coupling regime, and predict the subleading terms in its strong coupling asymptotics. For this purpose we solve numerical
We compute the two-point function of Konishi-like operators up to one-loop order, in N=4 supersymmetric Yang-Mills theory. We work perturbatively in N=1 superspace. We find the expression expected on the basis of superconformal invariance and determi