ترغب بنشر مسار تعليمي؟ اضغط هنا

Red Noise in Anomalous X-ray Pulsar Timing Residuals

95   0   0.0 ( 0 )
 نشر من قبل Anne Archibald
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomalous X-ray Pulsars (AXPs), thought to be magnetars, exhibit poorly understood deviations from a simple spin-down called timing noise. AXP timing noise has strong low-frequency components which pose significant challenges for quantification. We describe a procedure for extracting two quantities of interest, the intensity and power spectral index of timing noise. We apply this procedure to timing data from three sources: a monitoring campaign of five AXPs, observations of five young pulsars, and the stable rotator PSR B1937+21.

قيم البحث

اقرأ أيضاً

While pulsars possess exceptional rotational stability, large scale timing studies have revealed at least two distinct types of irregularities in their rotation: red timing noise and glitches. Using modern Bayesian techniques, we investigated the tim ing noise properties of 300 bright southern-sky radio pulsars that have been observed over 1.0-4.8 years by the upgraded Molonglo Observatory Synthesis Telescope (MOST). We reanalysed the spin and spin-down changes associated with nine previously reported pulsar glitches, report the discovery of three new glitches and four unusual glitch-like events in the rotational evolution of PSR J1825$-$0935. We develop a refined Bayesian framework for determining how red noise strength scales with pulsar spin frequency ($ u$) and spin-down frequency ($dot{ u}$), which we apply to a sample of 280 non-recycled pulsars. With this new method and a simple power-law scaling relation, we show that red noise strength scales across the non-recycled pulsar population as $ u^{a} |dot{ u}|^{b}$, where $a = -0.84^{+0.47}_{-0.49}$ and $b = 0.97^{+0.16}_{-0.19}$. This method can be easily adapted to utilise more complex, astrophysically motivated red noise models. Lastly, we highlight our timing of the double neutron star PSR J0737$-$3039, and the rediscovery of a bright radio pulsar originally found during the first Molonglo pulsar surveys with an incorrectly catalogued position.
99 - N.Rea 2004
We report on observations aimed at searching for flux variations from the proposed IR counterpart of the Anomalous X-ray Pulsar XTE J1810-197. These data, obtained in March 2004 with the adaptive optics camera NAOS-CONICA at the ESO VLT, show that th e candidate proposed by Israel et al. (2004) was fainter by Delta H=0.7+/-0.2 and Delta Ks=0.5+/-0.1 with respect to October 2003, confirming it as the IR counterpart of XTE J1810-197. We also report on an XMM-Newton observation carried out the day before the VLT observations. The 0.5-10 keV absorbed flux of the source was 2.2x10^-11 erg/s/cm^2, which is less by a factor of about two compared to the previous XMM-Newton observation on September 2003. Therefore, we conclude that a similar flux decrease took place in the X-ray and IR bands. We briefly discuss these results in the framework of the proposed mechanism(s) responsible for the IR variable emission of Anomalous X-ray Pulsars.
140 - M. E. Gonzalez 2007
We present results obtained from X-ray observations of the anomalous X-ray pulsar (AXP) 4U 0142+61 taken between 2000-2007 using XMM-Newton, Chandra and Swift. In observations taken before 2006, the pulse profile is observed to become more sinusoidal and the pulsed fraction increased with time. These results confirm those derived using the Rossi X-ray Timing Explorer and expand the observed evolution to energies below 2 keV. The XMM-Newton total flux in the 0.5-10 keV band is observed to be nearly constant in observations taken before 2006, while an increase of ~10% is seen afterwards and coincides with the burst activity detected from the source in 2006-2007. After these bursts, the evolution towards more sinusoidal pulse profiles ceased while the pulsed fraction showed a further increase. No evidence for large-scale, long-term changes in the emission as a result of the bursts is seen. The data also suggest a correlation between the flux and hardness of the spectrum, with brighter observations on average having a harder spectrum. As pointed out by other authors, we find that the standard blackbody plus power-law model does not provide the best spectral fit to the emission from 4U 0142+61. We also report on observations taken with the Gemini telescope after two bursts. These observations show source magnitudes consistent with previous measurements. Our results demonstrate the wide range of X-ray variability characteristics seen in AXPs and we discuss them in light of current emission models for these sources.
Pulsar timing array projects measure the pulse arrival times of millisecond pulsars for the primary purpose of detecting nanohertz-frequency gravitational waves. The measurements include contributions from a number of astrophysical and instrumental p rocesses, which can either be deterministic or stochastic. It is necessary to develop robust statistical and physical models for these noise processes because incorrect models diminish sensitivity and may cause a spurious gravitational wave detection. Here we characterise noise processes for the 26 pulsars in the second data release of the Parkes Pulsar Timing Array using Bayesian inference. In addition to well-studied noise sources found previously in pulsar timing array data sets such as achromatic timing noise and dispersion measure variations, we identify new noise sources including time-correlated chromatic noise that we attribute to variations in pulse scattering. We also identify exponential dip events in four pulsars, which we attribute to magnetospheric effects as evidenced by pulse profile shape changes observed for three of the pulsars. This includes an event in PSR J1713$+$0747, which had previously been attributed to interstellar propagation. We present noise models to be used in searches for gravitational waves. We outline a robust methodology to evaluate the performance of noise models and identify unknown signals in the data. The detection of variations in pulse profiles highlights the need to develop efficient profile domain timing methods.
Suzaku TOO observation of the anomalous X-ray pulsar CXOU J164710.2-455216 was performed on 2006 September 23--24 for a net exposure of 38.8 ks. During the observation, the XIS was operated in 1/8 window option to achieve a time resolution of 1 s. Pu lsations are clearly detected in the XIS light curves with a barycenter corrected pulse period of 10.61063(2) s. The XIS pulse profile shows 3 peaks of different amplitudes with RMS fractional amplitude of ~11% in 0.2--6.0 keV energy band. Though the source was observed with the HXD of Suzaku, the data is highly contaminated by the nearby bright X-ray source GX 340+0 which was in the HXD field of view. The 1-10 keV XIS spectra are well fitted by two blackbody components. The temperatures of two blackbody components are found to be 0.61+/-0.01 keV and 1.22+/-0.06 keV and the value of the absorption column density is 1.73+/-0.03 x 10^{22} atoms cm^{-2}. The observed source flux in 1-10 keV energy range is calculated to be 2.6 x 10^{-11} ergs cm^{-2} s^{-1} with significant contribution from the soft blackbody component (kT = 0.61 keV). Pulse phase resolved spectroscopy of XIS data shows that the flux of the soft blackbody component consists of three narrow peaks, whereas the flux of the other component shows a single peak over the pulse period of the AXP. The blackbody radii changes between 2.2-2.7 km and 0.28-0.38 km (assuming the source distance to be 5 kpc) over pulse phases for the soft and hard components, respectively. The details of the results obtained from the timing and spectral analysis is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا