ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum computation with quantum-dot spin qubits inside a cavity

66   0   0.0 ( 0 )
 نشر من قبل Ping Dong
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Universal set of quantum gates are realized from the conduction-band electron spin qubits of quantum dots embedded in a microcavity via two-channel Raman interaction. All of the gate operations are independent of the cavity mode states, emph{i.e.}, insensitive to the thermal cavity field. Individual addressing and effective switch of the cavity mediated interaction are directly possible here. Meanwhile, gate operations also can be carried out in parallel. The simple realization of needed interaction for selective qubits makes current scenario more suitable for scalable quantum computation.

قيم البحث

اقرأ أيضاً

184 - Rui Chao , Ben W. Reichardt 2017
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with fault-tolerance schemes with multiple encoded qubits. The 15-qubit Hamming code protects seven encoded qubits to distance three. We give fault-tolerant procedures for applying arbitrary Clifford operations on these encoded qubits, using only two extra qubits, 17 total. In particular, individual encoded qubits within the code block can be targeted. Fault-tolerant universal computation is possible with four extra qubits, 19 total. The procedures could enable testing more sophisticated protected circuits in small-scale quantum devices. Our main technique is to use gadgets to protect gates against correlated faults. We also take advantage of special code symmetries, and use pieceable fault tolerance.
Solid state quantum emitters have shown strong potential for applications in quantum information, but spectral inhomogeneity of these emitters poses a significant challenge. We address this issue in a cavity-quantum dot system by demonstrating cavity -stimulated Raman spin flip emission. This process avoids populating the excited state of the emitter and generates a photon that is Raman shifted from the laser and enhanced by the cavity. The emission is spectrally narrow and tunable over a range of at least 125 GHz, which is two orders of magnitude greater than the natural linewidth. We obtain the regime in which the Raman emission is spin-dependent, which couples the photon to a long-lived electron spin qubit. This process can enable an efficient, tunable source of indistinguishable photons and deterministic entanglement of distant spin qubits in a photonic crystal quantum network.
199 - Muhammad Asjad , Paolo Tombesi , 2015
We show that a cavity optomechanical system formed by a mechanical resonator simultaneously coupled to two modes of an optical cavity can be used for the implementation of a deterministic quantum phase gate between optical qubits associated with the two intracavity modes. The scheme is realizable for sufficiently strong single-photon optomechanical coupling in the resolved sideband regime, and is robust against cavity losses.
We consider the task of secure multi-party distributed quantum computation on a quantum network. We propose a protocol based on quantum error correction which reduces the number of necessary qubits. That is, each of the $n$ nodes in our protocol requ ires an operational workspace of $n^2 + 4n$ qubits, as opposed to previously shown $Omegabig((n^3+n^2s^2)log nbig)$ qubits, where $s$ is a security parameter. Additionally, we reduce the communication complexity by a factor of $mathcal{O}(n^3log(n))$ qubits per node, as compared to existing protocols. To achieve universal computation, we develop a distributed procedure for verifying magic states, which allows us to apply distributed gate teleportation and which may be of independent interest. We showcase our protocol on a small example for a 7-node network.
Significant experimental advances in single-electron silicon spin qubits have opened the possibility of realizing long-range entangling gates mediated by microwave photons. Recently proposed iSWAP gates, however, require tuning qubit energies into re sonance and have limited fidelity due to charge noise. We present a novel photon-mediated cross-resonance gate that is consistent with realistic experimental capabilities and requires no resonant tuning. Furthermore, we propose gate sequences capable of suppressing errors due to quasistatic noise for both the cross-resonance and iSWAP gates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا