ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved parameters for the transiting planet HD 17156b: a high-density giant planet with a very eccentric orbit

197   0   0.0 ( 0 )
 نشر من قبل Michael Gillon
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Gillon




اسأل ChatGPT حول البحث

We report high-precision transit photometry for the recently detected planet HD 17156b. Using these new data with previously published transit photometry and radial velocity measurements, we perform a combined analysis based on a Markov Chain Monte Carlo approach. The resulting mass M_p = 3.09 (+0.22-0.17) M_Jup and radius R_p = 1.23 (+0.17-0.20) R_Jup for the planet places it at the outer edge of the density distribution of known transiting planets with rho_p = 1.66 (+1.37-0.60) rho_Jup. The obtained transit ephemeris is T_tr = 2454438.48271 (+0.00077-0.00057) + N x 21.21747 (+0.00070-0.00067) BJD. The derived plausible tidal circularization time scales for HD 17156b are larger than the age of the host star. The measured high orbital eccentricity e = 0.6719 (+0.0052-0.0063) can thus not be interpreted as the clear sign of the presence of another body in the system.



قيم البحث

اقرأ أيضاً

We present simultaneous photometric and spectroscopic observations of HD 17156b spanning a transit on UT 2007 November 12. This system is of special interest because of its 21-day period (unusually long for a transiting planet) and its high orbital e ccentricity of 0.67. By modeling the Rossiter-McLaughlin effect, we find the angle between the sky projections of the orbital axis and the stellar rotation axis to be $62^{circ} pm 25^{circ}$. Such a large spin-orbit misalignment, as well as the large eccentricity, could be explained as the relic of a previous gravitational interaction with other planets.
We report the detection of transits by the 3.1 M_Jup companion to the V=8.17 G0V star HD 17156. The transit was observed by three independant observers on Sept. 9/10, 2007 (two in central Italy and one in the Canary Islands), who obtained detections at confidence levels of 3.0 sigma, 5.3 sigma, and 7.9 sigma, respectively. The observations were carried out under the auspices of the Transitsearch.org network, which organizes follow-up photometric transit searches of known planet-bearing stars during the time intervals when transits are expected to possibly occur. Analyses of the 7.9 sigma data set indicates a transit depth d=0.0062+/-0.0004, and a transit duration t=186+/-5 min. These values are consistent with the transit of a Jupiter-sized planet with an impact parameter b=a*cos(i)/R_star ~ 0.8. This planet occupies a unique regime among known transiting extrasolar planets, both as a result of its large orbital eccentricity (e=0.67) and long orbital period (P=21.2 d). The planet receives a 26-fold variation in insolation during the course of its orbit, which will make it a useful object for characterization of exoplanetary atmospheric dynamics.
166 - Guillermo Torres 2012
We report homogeneous spectroscopic determinations of the effective temperature, metallicity, and projected rotational velocity for the host stars of 56 transiting planets. Our analysis is based primarily on the Stellar Parameter Classification (SPC) technique. We investigate systematic errors by examining subsets of the data with two other methods that have often been used in previous studies (SME and MOOG). The SPC and SME results, both based on comparisons between synthetic spectra and actual spectra, show strong correlations between temperature, [Fe/H], and log g when solving for all three quantities simultaneously. In contrast the MOOG results, based on a more traditional curve-of-growth approach, show no such correlations. To combat the correlations and improve the accuracy of the temperatures and metallicities, we repeat the SPC analysis with a constraint on log g based on the mean stellar density that can be derived from the analysis of the transit light curves. Previous studies that have not taken advantage of this constraint have been subject to systematic errors in the stellar masses and radii of up to 20% and 10%, respectively, which can be larger than other observational uncertainties, and which also cause systematic errors in the planetary mass and radius.
The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e=0.53 +/- 0.04) revolving in 13.24 days around a faint (V=15.22) metal-rich K1V star. We use CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar and planetary parameters. We derive a radius of the planet of 0.97 +/- 0.07 R_Jup and a mass of 2.75 +/- 0.16 M_Jup. The bulk density, rho_pl=3.70 +/- 0.83 g/cm^3, is ~2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M_Earth of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau_circ > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
We derive improved system parameters for the HD 209458 system using a model that simultaneously fits both photometric transit and radial velocity observations. The photometry consists of previous Hubble Space Telescope STIS and FGS observations, twel ve I-band transits observed between 2001-2003 with the Mt. Laguna Observatory 1m telescope, and six Stromgren b+y transits observed between 2001-2004 with two of the Automatic Photometric Telescopes at Fairborn Observatory. The radial velocities were derived from Keck/HIRES observations. The model properly treats the orbital dynamics of the system, and thus yields robust and physically self-consistent solutions. Our set of system parameters agrees with previously published results though with improved accuracy. For example, applying robust limits on the stellar mass of 0.93-1.20Msun, we find 1.26 < Rplanet < 1.42 Rjup and 0.59 < Mplanet < 0.70 Mjup. We can reduce the uncertainty on these estimates by including a stellar mass-radius relation constraint, yielding Rplanet = 1.35 +/- 0.07 Rjup and Mplanet = 0.66 +/- 0.04 Mjup. Our results verify that the planetary radius is 10-20% larger than predicted by planet evolution models, confirming the need for an additional mechanism to slow the evolutionary contraction of the planet. A revised ephemeris is derived, T0=2452854.82545 + 3.52474554E (HJD), which now contains an uncertainty in the period of 0.016s and should facilitate future searches for planetary satellites and other bodies in the HD 209458 system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا