ترغب بنشر مسار تعليمي؟ اضغط هنا

Local tail bounds for functions of independent random variables

156   0   0.0 ( 0 )
 نشر من قبل G\\'{a}bor Lugosi
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that functions defined on ${0,1,...,r-1}^n$ satisfying certain conditions of bounded differences that guarantee sub-Gaussian tail behavior also satisfy a much stronger ``local sub-Gaussian property. For self-bounding and configuration functions we derive analogous locally subexponential behavior. The key tool is Talagrands [Ann. Probab. 22 (1994) 1576--1587] variance inequality for functions defined on the binary hypercube which we extend to functions of uniformly distributed random variables defined on ${0,1,...,r-1}^n$ for $rge2$.



قيم البحث

اقرأ أيضاً

We provide a sharp lower bound on the $p$-norm of a sum of independent uniform random variables in terms of its variance when $0 < p < 1$. We address an analogous question for $p$-Renyi entropy for $p$ in the same range.
We consider the problem of bounding large deviations for non-i.i.d. random variables that are allowed to have arbitrary dependencies. Previous works typically assumed a specific dependence structure, namely the existence of independent components. Bo unds that depend on the degree of dependence between the observations have only been studied in the theory of mixing processes, where variables are time-ordered. Here, we introduce a new way of measuring dependences within an unordered set of variables. We prove concentration inequalities, that apply to any set of random variables, but benefit from the presence of weak dependencies. We also discuss applications and extensions of our results to related problems of machine learning and large deviations.
We introduce a new functional representation of probability density functions (PDFs) of non-negative random variables via a product of a monomial factor and linear combinations of decaying exponentials with complex exponents. This approximate represe ntation of PDFs is obtained for any finite, user-selected accuracy. Using a fast algorithm involving Hankel matrices, we develop a general numerical method for computing the PDF of the sums, products, or quotients of any number of non-negative random variables yielding the result in the same type of functional representation. We present several examples to demonstrate the accuracy of the approach.
141 - Egor Kosov 2018
We study fractional smoothness of measures on $mathbb{R}^k$, that are images of a Gaussian measure under mappings from Gaussian Sobolev classes. As a consequence we obtain Nikolskii--Besov fractional regularity of these distributions under some weak nondegeneracy assumption.
208 - Egor Kosov 2021
In this paper we study bounds for the total variation distance between two second degree polynomials in normal random variables provided that they essentially depend on at least three variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا