ﻻ يوجد ملخص باللغة العربية
We use galaxy surface brightness as prior information to improve photometric redshift (photo-z) estimation. We apply our template-based photo-z method to imaging data from the ground-based VVDS survey and the space-based GOODS field from HST, and use spectroscopic redshifts to test our photometric redshifts for different galaxy types and redshifts. We find that the surface brightness prior eliminates a large fraction of outliers by lifting the degeneracy between the Lyman and 4000 Angstrom breaks. Bias and scatter are improved by about a factor of 2 with the prior for both the ground and space data. Ongoing and planned surveys from the ground and space will benefit, provided that care is taken in measurements of galaxy sizes and in the application of the prior. We discuss the image quality and signal-to-noise requirements that enable the surface brightness prior to be successfully applied.
Observations in the rest frame ultraviolet from various space missions are used to define the nearby starburst regions having the highest surface brightness on scales of several hundred pc. The bright limit is found to be 6x10^-16 ergs/cm^2-s-A-arcse
Upcoming imaging surveys, such as LSST, will provide an unprecedented view of the Universe, but with limited resolution along the line-of-sight. Common ways to increase resolution in the third dimension, and reduce misclassifications, include observi
Machine learning (ML) is a standard approach for estimating the redshifts of galaxies when only photometric information is available. ML photo-z solutions have traditionally ignored the morphological information available in galaxy images or partly i
Context. Studies of galaxy pairs can provide valuable information to jointly understand the formation and evolution of galaxies and galaxy groups. Consequently, taking into account the new high precision photo-z surveys, it is important to have relia
Forming a three dimensional view of the Universe is a long-standing goal of astronomical observations, and one that becomes increasingly difficult at high redshift. In this paper we discuss how tomography of the intergalactic medium (IGM) at $zsimeq