ﻻ يوجد ملخص باللغة العربية
Here we discuss evolution and broad-band emission of compact (< kpc) lobes in young radio sources. We propose a simple dynamical description for these objects, consisting of a relativistic jet propagating into a uniform gaseous medium in the central parts of an elliptical host. In the framework of the proposed model, we follow the evolution of ultrarelativistic electrons injected from a terminal hotspot of a jet to expanding lobes, taking into account their adiabatic energy losses as well as radiative cooling. This allows us to discuss the broad-band lobe emission of young radio sources. In particular, we argue that the observed spectral turnover in the radio synchrotron spectra of these objects cannot originate from the synchrotron self-absorption process but is most likely due to free-free absorption effects connected with neutral clouds of interstellar medium engulfed by the expanding lobes and photoionized by active centers. We also find a relatively strong and complex high-energy emission component produced by inverse-Compton up-scattering of various surrounding photon fields by the lobes electrons. We argue that such high energy radiation is strong enough to account for several observed properties of GHz-peaked-spectrum (GPS) radio galaxies at UV and X-ray frequencies. In addition, this emission is expected to extend up to GeV (or possibly even TeV) photon energies and can thus be probed by several modern gamma-ray instruments. In particular, we suggest that GPS radio galaxies should constitute a relatively numerous class of extragalactic sources detected by GLAST.
We investigate the sample of 213 GPS sources selected from simultaneous multi-frequency 1-22 GHz observations obtained with RATAN-600 radio telescope. We use publicly available data to characterize parsec-scale structure of the selected sources. Amon
Compact steep spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources represent a large fraction of the extragalactic objects in flux density-limited samples. They are compact, powerful radio sources whose synchrotron peak frequency ranges between
We report results of pentachromatic VLBI survey for 18 GHz-peaked spectrum sources. Spectral fitting at every pixel across five frequencies allows us to illustrate distribution of optical depth in terms of free-free absorption or synchrotron self abs
We present results on global very long baseline interferometry (VLBI) observations at 327 MHz of eighteen compact steep-spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources from the 3C and the Peacock & Wall catalogues. About 80 per cent of the
Compact steep-spectrum (CSS) and peaked spectrum (PS) radio sources are compact, powerful radio sources. The multi-frequency observational properties and current theories are reviewed with emphasis on developments since the earlier review of ODea (19