ترغب بنشر مسار تعليمي؟ اضغط هنا

Inducing periodicity and chaos by negative feedback

196   0   0.0 ( 0 )
 نشر من قبل Bruno. Cessac
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper has been withdrawn due to an error in the proof of the main theorem.



قيم البحث

اقرأ أيضاً

We study quasi periodic and frequency locked states that can occur in a sinusoidally driven linear harmonic oscillator in the special relativistic regime. We show how the shift in natural frequency of the oscillator with increasing relativistic effec ts leads to frequency locking or quasi periodicity and the chaotic states that arise due to the increasing non linearity. We find the same system can have multi-stable states in the presence of small damping. We also report an enhancement of chaos in the relativistic Henon-Heiles system.
In this work, we investigate the Earth-Moon system, as modeled by the planar circular restricted three-body problem, and relate its dynamical properties to the underlying structure associated with specific invariant manifolds. We consider a range of Jacobi constant values for which the neck around the Lagrangian point $L_1$ is always open but the orbits are bounded due to Hill stability. First, we show that the system displays three different dynamical scenarios in the neighborhood of the Moon: two mixed ones, with regular and chaotic orbits, and an almost entirely chaotic one in between. We then analyze the transitions between these scenarios using the Monodromy matrix theory and determine that they are given by two specific types of bifurcations. After that, we illustrate how the phase space configurations, particularly the shapes of stability regions and stickiness, are intrinsically related to the hyperbolic invariant manifolds of the Lyapunov orbits around $L_1$ and also to the ones of some particular unstable periodic orbits. Lastly, we define transit time in a manner that is useful to depict dynamical trapping and show that the traced geometrical structures are also connected to the transport properties of the system.
120 - D. J. Albers , J. C. Sprott 2004
This paper examines the most probable route to chaos in high-dimensional dynamical systems in a very general computational setting. The most probable route to chaos in high-dimensional, discrete-time maps is observed to be a sequence of Neimark-Sacke r bifurcations into chaos. A means for determining and understanding the degree to which the Landau-Hopf route to turbulence is non-generic in the space of $C^r$ mappings is outlined. The results comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss.
We use the Smaller Alignment Index (SALI) to distinguish rapidly and with certainty between ordered and chaotic motion in Hamiltonian flows. This distinction is based on the different behavior of the SALI for the two cases: the index fluctuates aroun d non--zero values for ordered orbits, while it tends rapidly to zero for chaotic orbits. We present a detailed study of SALIs behavior for chaotic orbits and show that in this case the SALI exponentially converges to zero, following a time rate depending on the difference of the two largest Lyapunov exponents $sigma_1$, $sigma_2$ i.e. $SALI propto e^{-(sigma_1-sigma_2)t}$. Exploiting the advantages of the SALI method, we demonstrate how one can rapidly identify even tiny regions of order or chaos in the phase space of Hamiltonian systems of 2 and 3 degrees of freedom.
We study an opto-electronic time-delay oscillator that displays high-speed chaotic behavior with a flat, broad power spectrum. The chaotic state coexists with a linearly-stable fixed point, which, when subjected to a finite-amplitude perturbation, lo ses stability initially via a periodic train of ultrafast pulses. We derive an approximate map that does an excellent job of capturing the observed instability. The oscillator provides a simple device for fundamental studies of time-delay dynamical systems and can be used as a building block for ultra-wide-band sensor networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا