ترغب بنشر مسار تعليمي؟ اضغط هنا

Some properties of finite meadows

146   0   0.0 ( 0 )
 نشر من قبل Inge Bethke
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this note is to describe the structure of finite meadows. We will show that the class of finite meadows is the closure of the class of finite fields under finite products. As a corollary, we obtain a unique representation of minimal meadows in terms of prime fields.



قيم البحث

اقرأ أيضاً

Let Q_0 denote the rational numbers expanded to a meadow, that is, after taking its zero-totalized form (0^{-1}=0) as the preferred interpretation. In this paper we consider cancellation meadows, i.e., meadows without proper zero divisors, such as $Q _0$ and prove a generic completeness result. We apply this result to cancellation meadows expanded with differentiation operators, the sign function, and with floor, ceiling and a signed variant of the square root, respectively. We give an equational axiomatization of these operators and thus obtain a finite basis for various expanded cancellation meadows.
A meadow is a zero totalised field (0^{-1}=0), and a cancellation meadow is a meadow without proper zero divisors. In this paper we consider differential meadows, i.e., meadows equipped with differentiation operators. We give an equational axiomatiza tion of these operators and thus obtain a finite basis for differential cancellation meadows. Using the Zariski topology we prove the existence of a differential cancellation meadow.
A emph{meadow} is a commutative ring with an inverse operator satisfying $0^{-1}=0$. We determine the initial algebra of the meadows of characteristic 0 and show that its word problem is decidable.
Meadows - commutative rings equipped with a total inversion operation - can be axiomatized by purely equational means. We study subvarieties of the variety of meadows obtained by extending the equational theory and expanding the signature.
We consider the signatures $Sigma_m=(0,1,-,+, cdot, ^{-1})$ of meadows and $(Sigma_m, {mathbf s})$ of signed meadows. We give two complete axiomatizations of the equational theories of the real numbers with respect to these signatures. In the first case, we extend the axiomatization of zero-totalized fields by a single axiom scheme expressing formal realness; the second axiomatization presupposes an ordering. We apply these completeness results in order to obtain complete axiomatizations of the complex numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا