ترغب بنشر مسار تعليمي؟ اضغط هنا

Reddening, Colour and Metallicity of the M31 Globular Cluster System

249   0   0.0 ( 0 )
 نشر من قبل Jun Ma
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z. Fan




اسأل ChatGPT حول البحث

Using metallicities from the literature, combined with the Revised Bologna Catalogue of photometric data for M31 clusters and cluster candidates (the latter of which is the most comprehensive catalogue of M31 clusters currently available, including 337 confirmed globular clusters -- GCs -- and 688 GC candidates), we determine 443 reddening values and intrinsic colours, and 209 metallicities for individual clusters without spectroscopic observations. This, the largest sample of M31 GCs presently available, is then used to analyse the metallicity distribution of M31 GCs, which is bimodal with peaks at $rm {[Fe/H]}approx -1.7$ and -0.7 dex. An exploration of metallicities as a function of radius from the M31 centre shows a metallicity gradient for the metal-poor GCs, but no such gradient for the metal-rich GCs. Our results show that the metal-rich clusters appear as a centrally concentrated spatial distribution; however, the metal-poor clusters tend to be less spatially concentrated. There is no correlation between luminosity and metallicity among the M31 sample clusters, which indicates that self-enrichment is indeed unimportant for cluster formation in M31. The reddening distribution shows that slightly more than half of the GCs are affected by a reddening of $E(B-V) la 0.2$ mag; the mean reddening value is $E(B-V) = 0.28_{-0.14}^{+0.23}$ mag. The spatial distribution of the reddening values indicates that the reddening on the northwestern side of the M31 disc is more significant than that on the southeastern side, which is consistent with the conclusion that the northwestern side in nearer to us.

قيم البحث

اقرأ أيضاً

Following on from our discovery of a significant population of M31 outer halo globular clusters (GCs), and updates to the Revised Bologna Catalogue of M31 GCs, we investigate the GC system of M31 out to an unprecedented radius (~120kpc). We derive va rious ensemble properties, including the magnitude, colour and metallicity distributions, as well as the GC number density profile. One of our most significant findings is evidence for a flattening in the radial GC number density profile in the outer halo. Intriguingly, this occurs at a galactocentric radius of ~2 degrees (~30 kpc) which is the radius at which the underlying stellar halo surface density has also been shown to flatten. The GCs which lie beyond this radius are remarkably uniform in terms of their blue (V-I)o colours, consistent with them belonging to an ancient population with little to no metallicity gradient. Structural parameters are also derived for a sample of 13 newly-discovered extended clusters (ECs) and we find the lowest luminosity ECs have magnitudes and sizes similar to Palomar-type GCs in the Milky Way halo. We argue that our findings provide strong support for a scenario in which a significant fraction of the outer halo GC population of M31 has been accreted.
We present a detailed kinematic analysis of the outer halo globular cluster (GC) system of M31. Our basis for this is a set of new spectroscopic observations for 78 clusters lying at projected distances between Rproj ~20-140 kpc from the M31 centre. These are largely drawn from the recent PAndAS globular cluster catalogue; 63 of our targets have no previous velocity data. Via a Bayesian maximum likelihood analysis we find that GCs with Rproj > 30 kpc exhibit coherent rotation around the minor optical axis of M31, in the same direction as more centrally- located GCs, but with a smaller amplitude of 86+/-17 km s-1. There is also evidence that the velocity dispersion of the outer halo GC system decreases as a function of projected distance from the M31 centre, and that this relation can be well described by a power law of index ~ -0.5. The velocity dispersion profile of the outer halo GCs is quite similar to that of the halo stars, at least out to the radius up to which there is available information on the stellar kinematics. We detect and discuss various velocity correlations amongst subgroups of GCs that lie on stellar debris streams in the M31 halo. Many of these subgroups are dynamically cold, exhibiting internal velocity dispersions consistent with zero. Simple Monte Carlo experiments imply that such configurations are unlikely to form by chance, adding weight to the notion that a significant fraction of the outer halo GCs in M31 have been accreted alongside their parent dwarf galaxies. We also estimate the M31 mass within 200 kpc via the Tracer Mass Estimator, finding (1.2 - 1.6) +/- 0.2 10^{12}M_sun. This quantity is subject to additional systematic effects due to various limitations of the data, and assumptions built in into the TME. Finally, we discuss our results in the context of formation scenarios for the M31 halo.
71 - Myung Gyoon Lee 2007
We present a kinematic analysis of the globular cluster(GC) system in M31. Using the photometric and spectroscopic database of 504 GCs, we have investigated the kinematics of the M31 GC system. We find that the all GC system shows strong rotation, wi th rotation amplitude of v_rot~190km/s, and that a weak rotation persists even for the outermost samples at |Y|>5kpc. The rotation-corrected velocity dispersion for the GC system is estimated to be sigma_{p,r}~130km/s, and it increases from sigma_{p,r}~120km/s at |Y|<1kpc to sigma_{p,r}~150km/s at |Y|>5kpc. These results are very similar to those for the metal-poor GCs. This shows that there is a dynamically hot halo in M31 that is rotating but primarily pressure-supported. We have identified 50 friendless GCs, and they appear to rotate around the major axis of M31. For the subsamples of metal-poor and metal-rich GCs, we have found that the metal-rich GCs are more centrally concentrated than the metal-poor GCs, and both subsamples show strong rotation. For the subsamples of bright and faint GCs, it is found that the rotation for the faint GCs is stronger than that for the bright GCs. We have identified 56 GCs and GC candidates with X-ray detection. It is found that the majority of X-ray emitting GCs follow the disk rotation, and that the redder, more metal-rich, and brighter GCs are more likely to be detected as X-ray emitting GCs. We have derived a rotation curve of M31 using the GCs at |Y|<0.6kpc. We have estimated the dynamical mass of M31 using `Projected Mass Estimator(PME) and `Tracer Mass Estimator(TME). We finally discuss the implication of these results and compare the kinematics of GCs with that of planetary nebulae in M31.
79 - Sibilla Perina 2009
With the aim of increasing the sample of M31 clusters for which a colour magnitude diagram is available, we searched the HST archive for ACS images containing objects included in the Revised Bologna Catalogue of M31 globular clusters. Sixty-three suc h objects were found. We used the ACS images to confirm or revise their classification and we obtained useful CMDs for 11 old globular clusters and 6 luminous young clusters. We obtained simultaneous estimates of the distance, reddening, and metallicity of old clusters by comparing their observed field-decontaminated CMDs with a grid of template clusters of the Milky Way. We estimated the age of the young clusters by fitting with theoretical isochrones. For the old clusters, we found metallicities in the range -0.4<=[Fe/H]<=-1.9, that generally agree with existing spectroscopic extimates. At least four of them display a clear blue HB, indicating ages >10 Gyr. All six candidate young clusters are found to have ages <1Gyr. With the present work the total number of M31 GCs with reliable optical CMD increases from 35 to 44 for the old clusters, and from 7 to 11 for the young ones. The old clusters show similar characteristics to those of the MW. We discuss the case of the cluster B407, with a metallicity [Fe/H] ~-0.6 and located at a large projected distance from the centre of M31 and from the galaxy major axis. Metal-rich globulars at large galactocentric distances are rare both in M31 and in the MW. B407, in addition, has a velocity in stark contrast with the rotation pattern shared by the bulk of M31 clusters of similar metallicity. This, along with other empirical evidence, supports the hypothesis that the cluster is physically associated with a substructure in the M31 halo that has been interpreted as the relic of a merging event.
45 - Thomas H. Puzia 2005
We present spectroscopic ages, metallicities, and [alpha/Fe] ratios for 70 globular clusters in M31 that were derived from Lick line-index measurements. In addition to a population of old (>10 Gyr) globular clusters with a wide range of metallicities , from about -2.0 dex to solar values, we find evidence for a population of intermediate-age globular clusters with ages between ~5 and 8 Gyr and a mean metallicity around [Z/H]=-0.6. We also confirm the presence of young M31 globular clusters that were recently identified by Beasley et al. (2004), which have ages <1 Gyr and relatively high metallicities around -0.4 dex. The M31 globular cluster system has a clearly super-solar mean [alpha/Fe]=0.14pm0.04 dex. Intermediate-age and young objects show roughly solar abundance ratios. We find evidence for an age-[alpha/Fe] relation in the sense that younger clusters have smaller mean [alpha/Fe] ratios. From a comparison of indices, mostly sensitive to carbon and/or nitrogen abundance, with SSP model predictions for nitrogen-enhanced stellar populations, we find a dichotomy in nitrogen enhancement between young and old M31 globular clusters. The indices of objects older than 5 Gyr are consistent with a factor of three or higher in nitrogen enhancement compared to their younger counterparts. Using kinematical data from Morrison et al. (2004) we find that the globular cluster sub-population with halo kinematics is old (>9 Gyr), has a bimodal metallicity distribution, and super-solar [alpha/Fe]. Disk globular clusters have a wider range of ages, are on average more metal-rich, and have a slightly smaller mean [alpha/Fe] ratio. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا