ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and X-ray variability of two Small Magellanic Cloud X-ray binary pulsars - SXP46.6 and SXP6.85

127   0   0.0 ( 0 )
 نشر من قبل Katherine E. McGowan
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K.E. McGowan




اسأل ChatGPT حول البحث

We present long-term optical and RXTE data of two X-ray binary pulsars in the Small Magellanic Cloud, SXP46.6 and SXP6.85. The optical light curves of both sources show substantial (~0.5-0.8 mag) changes over the time span of the observations. While the optical data for SXP6.85 do not reveal any periodic behaviour, by detrending the optical measurements for SXP46.6 we find an orbital period of ~137 days, consistent with results from the X-ray data. The detection of Type I X-ray outbursts from SXP46.6, combined with the fact that we also see optical outbursts at these times, implies that SXP46.6 is a high orbital eccentricity system. Using contemporaneous optical spectra of SXP46.6 we find that the equivalent width of the H_alpha emission line changes over time indicating that the size of the circumstellar disc varies. By studying the history of the colour variations for SXP6.85 we find that the source gets redder as it brightens which can also be attributed to changes in the circumstellar disc. We do not find any correlation between the X-ray and optical data for SXP6.85. The results for SXP6.85 suggest that it is a low eccentricity binary and that the optical modulations are due to the Be phenomenon.



قيم البحث

اقرأ أيضاً

The Small Magellanic Cloud (SMC) Be/X-ray binary pulsar SXP6.85 = XTE J0103-728 underwent a large Type II outburst beginning on 2008 August 10. The source was consistently seen for the following 20 weeks (MJD = 54688 - 54830). We present X-ray timing and spectroscopic analysis of the source as part of our ongoing Rossi X-ray Timing Explorer (RXTE) monitoring campaign and INTEGRAL key programme monitoring the SMC and 47 Tuc. A comparison with the Optical Gravitational Lensing Experiment (OGLE) III light curve of the Be counterpart shows the X-ray outbursts from this source coincide with times of optical maximum. We attribute this to the circumstellar disk increasing in size, causing mass accretion onto the neutron star. Ground based IR photometry and H-alpha spectroscopy obtained during the outburst are used as a measure of the size of the circumstellar disk and lend support to this picture. In addition, folded RXTE light curves seem to indicate complex changes in the geometry of the accretion regions on the surface of the neutron star, which may be indicative of an inhomogeneous density distribution in the circumstellar material causing a variable accretion rate onto the neutron star. Finally, the assumed inclination of the system and H-alpha equivalent width measurements are used to make a simplistic estimate of the size of the circumstellar disk.
129 - M.J. Coe , J. Kirk 2015
This is a catalogue of approximately 70 X-ray emitting binary systems in the Small Magellanic Cloud (SMC) that contain a Be star as the mass donor in the system and a clear X-ray pulse signature from a neutron star. The systems are generally referred to as Be/Xray binaries. It lists all their known binary characteristics (orbital period, eccentricity), the measured spin period of the compact object, plus the characteristics of the Be star (spectral type, size of the circumstellar disk, evidence for NRP behaviour). For the first time data from the Spitzer Observatory are combined with ground-based data to provide a view of these systems out into the far-IR. Many of the observational parameters are presented as statistical distributions and compared to other similar similar populations (eg isolated Be & B stars) in the SMC, and to other Be/X-ray systems in the Milky Way. In addition previous important results are re-investigated using this excellently homogeneous sample. In particular, the evidence for a bi-modality in the spin period distribution is shown to be even stronger than first proposed, and the correlation between orbital period and circumstellar disk size seen in galactic sources is shown to be clearly present in the SMC systems and quantised for the first time.
369 - S. Laycock 2004
Results of a 4 year monitoring campaign of the SMC using the Rossi X-ray timing Explorer (RXTE) are presented. This large dataset makes possible detailed investigation of a significant sample of SMC X-ray binaries. 8 new X-ray pulsars were discovered and a total of 20 different systems were detected. Spectral and timing parameters were obtained for 18. In the case of 10 pulsars, repeated outbursts were observed, allowing determination of candidate orbital periods for these systems. We also discuss the spatial and pulse period distributions of the SMC pulsars.
148 - K. E. McGowan 2007
We investigate the X-ray and optical properties of a sample of X-ray bright sources from the Small Magellanic Cloud (SMC) Wing Survey. We have detected two new pulsars with pulse periods of 65.8 s (CXOU J010712.6-723533) and 700 s (CXOU J010206.6-714 115), and present observations of two previously known pulsars RX J0057.3-7325 (SXP101) and SAX J0103.2-7209 (SXP348). Our analysis has led to three new optical identifications for the detected pulsars. We find long-term optical periods for two of the pulsars, CXOU J010206.6-714115 and SXP101, of 267 and 21.9 d, respectively. Spectral analysis of a sub-set of the sample shows that the pulsars have harder spectra than the other sources detected. By employing a quantile-based colour-colour analysis we are able to separate the detected pulsars from the rest of the sample. Using archival catalogues we have been able to identify counterparts for the majority of the sources in our sample. Combining this with our results from the temporal analysis of the Chandra data and archival optical data, the X-ray spectral analysis, and by determining the X-ray to optical flux ratios we present preliminary classifications for the sources. In addition to the four detected pulsars, our sample includes two candidate foreground stars, 12 probable active galactic nuclei, and five unclassified sources.
107 - F. Haberl , P. Eger , W. Pietsch 2008
(abridged) We analysed eight XMM-Newton observations toward the Small Magellanic Cloud (SMC), performed between October 2006 and June 2007, to investigate high mass X-ray binary systems. We found new X-ray binary pulsars with periods of 202 s (XMMU J 005929.0-723703), 342 s (XMMU J005403.8-722632), 645 s (XMMU J005535.2-722906) and 325 s (XMMU J005252.1-721715), in the latter case confirming the independent discovery in Chandra data. In addition we detected sixteen known Be/X-ray binary pulsars and six ROSAT-classified candidate high mass X-ray binaries. From one of the candidates, RX J0058.2-7231, we discovered X-ray pulsations with a period of 291 s which makes it the likely counterpart of XTE J0051-727. From the known pulsars, we revise the pulse period of CXOU J010206.6-714115 to 967 s, and we detected the 18.37 s pulsar XTE J0055-727 (= XMM J004911.4-724939) in outburst, which allowed us to localise the source. The pulse profiles of the X-ray pulsars show a large variety of shapes from smooth to highly structured patterns and differing energy dependence. For all the candidate high mass X-ray binaries optical counterparts can be identified with magnitudes and colours consistent with Be stars. Twenty of the Be/X-ray binaries were detected with X-ray luminosities in the range 1.5x10^35 erg/s - 5.5x10^36 erg/s. The majority of the spectra is well represented by an absorbed power-law with an average power-law index of 0.93. The absorption (in addition to the Galactic foreground value) varies over a wide range between a few 10^20 H cm^-2 and several 10^22 H cm^-2. An overall correlation of the absorption with the total SMC HI column density suggests that the absorption seen in the X-ray spectra is often largely caused by interstellar gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا