ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized Emission Lines from Single InGaN/GaN Quantum Dots: Role of the Valence-band Structure of Wurtzite Group-III Nitrides

103   0   0.0 ( 0 )
 نشر من قبل Momme Winkelnkemper
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the polarization properties of emission lines from single InGaN/GaN quantum dots (QDs). The QDs, formed by spinodal decomposition within ultra-thin InGaN quantum wells, are investigated using single-QD cathodoluminescence (CL). The emission lines exhibit a systematic linear polarization in the orthogonal crystal directions [1 1 -2 0] and [-1 1 0 0]--a symmetry that is non-native to hexagonal crystals. Eight-band k.p calculations reveal a mechanism that can explain the observed polarizations: The character of the hole(s) in an excitonic complex determines the polarization direction of the respective emission if the QD is slightly elongated. Transitions involving A-band holes are polarized parallel to the elongation; transitions involving B-type holes are polarized in the orthogonal direction. The energetic separation of both hole states is smaller than 10 meV. The mechanism leading to the linear polarizations is not restricted to InGaN QDs, but should occur in other wurtzite-nitride QDs and in materials with similar valence band structure.



قيم البحث

اقرأ أيضاً

Cathodoluminescence measurements on single InGaN/GaN quantum dots (QDs) are reported. Complex spectra with up to five emission lines per QD are observed. The lines are polarized along the orthogonal crystal directions [1 1 -2 0] and [-1 1 0 0]. Reali stic eight-band k.p electronic structure calculations show that the polarization of the lines can be explained by excitonic recombinations involving hole states which are either formed by the A or the B valence band.
A pencil-like morphology of homoepitaxially grown GaN nanowires is exploited for the fabrication of thin conformal intrawire InGaN nanoshells which host quantum dots in nonpolar, semipolar and polar crystal regions. All three quantum dot types exhibi t single photon emission with narrow emission line widths and high degrees of linear optical polarization. The host crystal region strongly affects both single photon wavelength and emission lifetime, reaching subnanosecond time scales for the non- and semipolar quantum dots. Localization sites in the InGaN potential landscape, most likely induced by indium fluctuations across the InGaN nanoshell, are identified as the driving mechanism for the single photon emission. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon sources and is, thus, a promising building block for tunable quantum light devices integrated into future photonic circuits.
The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ~330 MHz. A small but sy stematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.
We present an eight-band k.p model for the calculation of the electronic structure of wurtzite semiconductor quantum dots (QDs) and its application to indium gallium nitride (InGaN) QDs formed by composition fluctuations in InGaN layers. The eight-ba nd k.p model accounts for strain effects, piezoelectric and pyroelectricity, spin-orbit and crystal field splitting. Exciton binding energies are calculated using the self-consistent Hartree method. Using this model, we studied the electronic properties of InGaN QDs and their dependence on structural properties, i.e., their chemical composition, height, and lateral diameter. We found a dominant influence of the built-in piezoelectric and pyroelectric fields, causing a spatial separation of the bound electron and hole states and a redshift of the exciton transition energies. The single-particle energies as well as the exciton energies depend heavily on the composition and geometry of the QDs.
High resolution coherent nonlinear optical spectroscopy of an ensemble of red-emitting InGaN quantum dots in GaN nanowires is reported. The data show a pronounced atom-like interaction between resonant laser fields and quantum dot excitons at low tem perature that is difficult to observe in the linear absorption spectrum due to inhomogeneous broadening from indium fluctuation effects. We find that the nonlinear signal persists strongly at room temperature. The robust atom-like room temperature response indicates the possibility that this material could serve as the platform for proposed excitonic based applications without the need of cryogenics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا