ﻻ يوجد ملخص باللغة العربية
Following previous study, in the Littlest Higgs model (LHM), the heavy photon is supposed to be a possible dark matter candidate and its relic abundance of the heavy photon is estimated in terms of the Boltzman-Lee-Weinberg time-evolution equation. The effects of the T-parity violation is also considered. Our calculations show that when Higgs mass $M_H$ taken to be 300 GeV and dont consider T-parity violation, only two narrow ranges $133<M_{A_{H}}<135$ GeV and $167<M_{A_{H}}<169$ GeV are tolerable with the current astrophysical observation and if $135<M_{A_{H}}<167$ GeV, there must at least exist another species of heavy particle contributing to the cold dark matter. As long as the T-parity can be violated, the heavy photon can decay into regular standard model particles and would affect the dark matter abundance in the universe, we discuss the constraint on the T-parity violation parameter based on the present data. Direct detection prospects are also discussed in some detail.
In the framework of the littlest Higgs model with T-parity (LHT), we study the contributions of the T-even and T-odd particles to the branching ratio R_b. We find that the precision data of R_b can give strong constraints on the masses of T-odd fermions.
In this paper we consider the effects of the T-parity violating anomalous Wess-Zumino-Witten-Term in the Littlest Higgs model. Apart from tree level processes, the loop induced decays of the heavy mirror particles into light standard model fermions l
The Little Higgs model with T-parity (LHT) belongs to the non-minimal flavour violating model. This model has new sources of flavour and CP violation both in quark and leptonic sectors. These new sources of flavour violation originates by the interac
Little Higgs models are an interesting alternative to explain electroweak symmetry breaking without fine-tuning. Supplemented with a discrete symmetry (T-parity) constraints from electroweak precision data are naturally evaded and also a viable dark
We re-examine lepton flavor violation (LFV) in the Littlest Higgs model with T--parity (LHT) including the full T--odd (non-singlet) lepton and Goldstone sectors. The heavy leptons induce two independent sources of LFV associated with the couplings n