ترغب بنشر مسار تعليمي؟ اضغط هنا

LIGO: The Laser Interferometer Gravitational-Wave Observatory

200   0   0.0 ( 0 )
 نشر من قبل Peter Fritschel
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of the Laser Interferometric Gravitational-Wave Observatory (LIGO) is to detect and study gravitational waves of astrophysical origin. Direct detection of gravitational waves holds the promise of testing general relativity in the strong-field regime, of providing a new probe of exotic objects such as black hole and neutron stars, and of uncovering unanticipated new astrophysics. LIGO, a joint Caltech-MIT project supported by the National Science Foundation, operates three multi-kilometer interferometers at two widely separated sites in the United States. These detectors are the result of decades of worldwide technology development, design, construction, and commissioning. They are now operating at their design sensitivity, and are sensitive to gravitational wave strains smaller than 1 part in 1E21. With this unprecedented sensitivity, the data are being analyzed to detect or place limits on gravitational waves from a variety of potential astrophysical sources.



قيم البحث

اقرأ أيضاً

129 - Mengxu Liu , Biping Gong 2020
The gravitational wave (GW) has opened a new window to the universe beyond the electromagnetic spectrum. Since 2015, dozens of GW events have been caught by the ground-based GW detectors through laser interferometry. However, all the ground-based det ectors are L-shaped Michelson interferometers, with very limited directional response to GW. Here we propose a three-dimensional (3-D) laser interferometer detector in the shape of a regular triangular pyramid, which has more spherically symmetric antenna pattern. Moreover, the new configuration corresponds to much stronger constraints on parameters of GW sources, and is capable of constructing null-streams to get rid of the signal-like noise events. A 3-D detector of kilometer scale of such kind would shed new light on the joint search of GW and electromagnetic emission.
We propose using the LIGO-Virgo detector network as a Hanbury Brown--Twiss (HBT) interferometer. Our focus is on the behavior of the gravitational waves at the detector rather than the source. We examine HBT interferometry for gravitational waves fro m binary inspirals which are currently detectable with the LIGO-Virgo network. Previous work on HBT interferometry for gravitational waves has concentrated on characterization of both classical and non-classical properties of signals from cosmological sources in the early Universe which are not detectable by the LIGO-Virgo network. Since the HBT effect can be described equally via classical intensities or via quantum graviton creation/annihilation operators, observation of this effect would not provide an unambiguous demonstration of the quantization of gravity. However, the observation of the HBT effect by LIGO-Virgo would provide a new tool in the detection and analysis of gravitational wave signals.
67 - S. Sato , S. Miyoki , S. Telada 2004
In order to detect the rare astrophysical events that generate gravitational wave (GW) radiation, sufficient stability is required for GW antennas to allow long-term observation. In practice, seismic excitation is one of the most common disturbances effecting stable operation of suspended-mirror laser interferometers. A straightforward means to allow more stable operation is therefore to locate the antenna, the ``observatory, at a ``quiet site. A laser interferometer gravitational wave antenna with a baseline length of 20m (LISM) was developed at a site 1000m underground, near Kamioka, Japan. This project was a unique demonstration of a prototype laser interferometer for gravitational wave observation located underground. The extremely stable environment is the prime motivation for going underground. In this paper, the demonstrated ultra-stable operation of the interferometer and a well-maintained antenna sensitivity are reported.
Several km-scale gravitational-wave detectors have been constructed world wide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.
Atom-interferometer gravitational-wave (GW) observatory, as a new design of ground-based GW detector for the near future, is sensitive at a relatively low frequency for GW observations. Taking the proposed atom interferometer Zhaoshan Long-baseline A tom Interferometer Gravitation Antenna (ZAIGA), and its illustrative upgrade (Z+) as examples, we investigate how the atom interferometer will complement ground-based laser interferometers in testing the gravitational dipole radiation from binary neutron star (BNS) mergers. A test of such kind is important for a better understanding of the strong equivalence principle laying at the heart of Einsteins general relativity. To obtain a statistically sound result, we sample BNS systems according to their merger rate and population, from which we study the expected bounds on the parameterized dipole radiation parameter $B$. Extracting BNS parameters and the dipole radiation from the combination of ground-based laser interferometers and the atom-interferometer ZAIGA/Z+, we are entitled to obtain tighter bounds on $B$ by a few times to a few orders of magnitude, compared to ground-based laser interferometers alone, ultimately reaching the levels of $|B| lesssim 10^{-9}$ (with ZAIGA) and $|B| lesssim 10^{-10}$ (with Z+).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا