ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the enhanced localization of bosonic atoms by fermionic atoms in three-dimensional optical lattices and find a self-trapping of the bosons for attractive boson-fermion interaction. Because of this mutual interaction, the fermion orbitals are substantially squeezed, which results in a strong deformation of the effective potential for bosons. This effect is enhanced by an increasing bosonic filling factor leading to a large shift of the transition between the superfluid and the Mott-insulator phase. We find a nonlinear dependency of the critical potential depth on the boson-fermion interaction strength. The results, in general, demonstrate the important role of higher Bloch bands for the physics of attractively interacting quantum gas mixtures in optical lattices and are of direct relevance to recent experiments with 87Rb - 40K mixtures, where a large shift of the critical point has been found.
We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on: collective mode calculations, where a sharp decrease in collective mode frequency is predicted at t
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental obse
We use quantum Monte Carlo simulations to obtain zero-temperature state diagrams for strongly correlated lattice bosons in one and two dimensions under the influence of a harmonic confining potential. Since harmonic traps generate a coexistence of su
We calculate the single-particle spectral function for the one-band Bose-Hubbard model within the random phase approximation (RPA). In the strongly correlated superfluid, in addition to the gapless phonon excitations, we find extra gapped modes which
The superfluid--Mott-insulator phase transition of ultracold spin-1 bosons with ferromagnetic and antiferromagnetic interactions in an optical lattice is theoretically investigated. Two counterpropagating linearly polarized laser beams with the angle