ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent electron-phonon states in suspended quantum dots: decoherence and dissipation effects

41   0   0.0 ( 0 )
 نشر من قبل Luis Rego G.C.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Luis G.C. Rego




اسأل ChatGPT حول البحث

The dynamics of coherent electron-phonon (el-ph) states is investigated for a suspended nanostructure. Exact quantum dynamics calculations reveal that electron and phonons (comprising a thermal bath) couple quantum mechanically to perform coherent oscillations with periods in the range of tens of nanoseconds, despite the finite temperature of the phonon bath. Mechanical energy dissipation due to clamping loss is taken into account in the calculations. Although the lifetime of the coupled el-ph states decreases with the temperature, well defined Rabi oscillations are obtained for temperatures up to 100 mK. The dynamics of the coupled electron-phonon state is susceptible to various forms of external control. For instance, a weak external magnetic field can be used to control the dynamics of the system, by decoupling the electron from the phonon bath. The results cast light upon the underlying physics of a yet unexplored system that could be suitable for novel quantum device applications.

قيم البحث

اقرأ أيضاً

In this article we review our work on the dynamics and decoherence of electron and hole spins in single and double quantum dots. The first part, on electron spins, focuses on decoherence induced via the hyperfine interaction while the second part cov ers decoherence and relaxation of heavy-hole spins due to spin-orbit interaction as well as the manipulation of heavy-hole spin using electric dipole spin resonance.
515 - Jun-Hong An , Mang Feng , 2009
We microscopically model the decoherence dynamics of entangled coherent states under the influence of vacuum fluctuation. We derive an exact master equation with time-dependent coefficients reflecting the memory effect of the environment, by using th e Feynman-Vernon influence functional theory in the coherent-state representation. Under the Markovian approximation, our master equation recovers the widely used Lindblad equation in quantum optics. We then investigate the non-Markovian entanglement dynamics of the quantum channel in terms of the entangled coherent states under noise. Compared with the results in Markovian limit, it shows that the non-Markovian effect enhances the disentanglement to the initially entangled coherent state. Our analysis also shows that the decoherence behaviors of the entangled coherent states depend sensitively on the symmetrical properties of the entangled coherent states as well as the interactions between the system and the environment.
We investigate the temperature dependence of photon coherence properties through two photon interference (TPI) measurements from a single QD under resonant excitation. We show that the loss of indistinguishability is only related to the electron-phon on coupling without being affected by spectral diffusion. Through these measurements, and a complementary microscopic theory, we identify two independent separate decoherence processes each associated to phonons. Below 10K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature, and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.
159 - H. Wang , E. Lhuillier , Q. Yu 2015
We present a tunnel spectroscopy study of single PbS Quantum Dots (QDs) as function of temperature and gate voltage. Three distinct signatures of strong electron-phonon coupling are observed in the Electron Tunneling Spectrum (ETS) of these QDs. In t he shell-filling regime, the $8times$ degeneracy of the electronic levels is lifted by the Coulomb interactions and allows the observation of phonon sub-bands that result from the emission of optical phonons. At low bias, a gap is observed in the ETS that cannot be closed with the gate voltage, which is a distinguishing feature of the Franck-Condon (FC) blockade. From the data, a Huang-Rhys factor in the range $Ssim 1.7 - 2.5$ is obtained. Finally, in the shell tunneling regime, the optical phonons appear in the inelastic ETS $d^2I/dV^2$.
We theoretically introduce a new kind of non-Gaussian state-----Laguerre polynomial excited coherent states by using the multiphoton catalysis which actually can be considered as a block comprising photon number operator. It is found that the normali zed factor is related to the two-variable Hermite polynomials. We then investigate the nonclassical properties in terms of Mandels Q parameter, quadrature squeezing, second correlation, and the negativity of Wigner function (WF). It is shown that all these properties are related to the amplitude of coherent state, catalysis number and unbalanced beam splitter (BS). In particular, the maximum degree of squeezing can be enhanced as catalysis number and keeps a constant for single-photon catalysis. In addition, we examine the effect of decoherence by Wigner function, which show that the negative region, characteristic time of decoherence and structure of WF are affected by catalysis number and unbalanced BS. Our work provides a general analysis about how to prepare theoretically polynomials quantum states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا