ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence in Boundary Flow of Superfluid $^4$He Triggered by Free Vortex Rings

216   0   0.0 ( 0 )
 نشر من قبل Shoji Fujiyama
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transition to turbulence in the boundary flow of superfluid $^4$He is investigated using a vortex--free vibrating wire. At high wire vibration velocities, we found that stable alternating flow around the wire enters a turbulent phase triggered by free vortex rings. Numerical simulations of vortex dynamics demonstrate that vortex rings can attach to the surface of an oscillating obstacle and expand unstably due to the boundary flow of the superfluid, forming turbulence. Experimental investigations indicate that the turbulent phase continues even after stopping the injection of vortex rings, which is also confirmed by the simulations.



قيم البحث

اقرأ أيضاً

127 - S. Ikawa , M. Tsubota 2015
We study numerically nonuniform quantum turbulence of coflow in a square channel by the vortex filament model. Coflow means that superfluid velocity $bm{v}_s$ and normal fluid velocity $bm{v}_n$ flow in the same direction. Quantum turbulence for ther mal counterflow has been long studied theoretically and experimentally. In recent years, experiments of coflow are performed to observe different features from thermal counterflow. By supposing that $bm{v}_s$ is uniform and $bm{v}_n$ takes the Hagen-Poiseiulle profile, our simulation finds that quantized vortices are distributed inhomogeneously. Vortices like to accumulate on the surface of a cylinder with $bm{v}_s simeq bm{v}_n$. Consequently, the vortex configuration becomes degenerate from three-dimensional to two-dimensional.
Collisions in a beam of unidirectional quantized vortex rings of nearly identical radii $R$ in superfluid $^4$He in the limit of zero temperature (0.05 K) were studied using time-of-flight spectroscopy. Reconnections between two primary rings result in secondary vortex loops of both smaller and larger radii. Discrete steps in the distribution of flight times, due to the limits on the earliest possible arrival times of secondary loops created after either one or two consecutive reconnections, are observed. The density of primary rings was found to be capped at the value $500{rm ,cm}^{-2} R^{-1}$ independent of the injected density. This is due to collisions between rings causing piling-up of many other vortex rings. Both observations are in quantitative agreement with our theory.
We report on a combined theoretical and numerical study of counterflow turbulence in superfluid $^{4}$He in a wide range of parameters. The energy spectra of the velocity fluctuations of both the normal-fluid and superfluid components are strongly an isotropic. The angular dependence of the correlation between velocity fluctuations of the two components plays the key role. A selective energy dissipation intensifies as scales decrease, with the streamwise velocity fluctuations becoming dominant. Most of the flow energy is concentrated in a wavevector plane which is orthogonal to the direction of the counterflow. The phenomenon becomes more prominent at higher temperatures as the coupling between the components depends on the temperature and the direction with respect to the counterflow velocity.
We develop an analytic theory of strong anisotropy of the energy spectra in the thermally-driven turbulent counterflow of superfluid He-4. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy f lux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by the numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiment, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade-dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is a part of the theme issue Scaling the turbulence edifice.
246 - A.Freund , D.Gonzalez , X.Buelna 2018
Formation of vortex rings around moving spherical objects in superfluid He-4 at 0 K is modeled by time-dependent density functional theory. The simulations provide detailed information of the microscopic events that lead to vortex ring emission throu gh characteristic observables such as liquid current circulation, drag force, and hydrodynamic mass. A series of simulations were performed to determine velocity thresholds for the onset of dissipation as a function of the sphere radius up to 1.8 nm and at external pressures of zero and 1 bar. The threshold was observed to decrease with the sphere radius and increase with pressure thus showing that the onset of dissipation does not involve roton emission events (Landau critical velocity), but rather vortex emission (Feynman critical velocity), which is also confirmed by the observed periodic response of the hydrodynamic observables as well as visualization of the liquid current circulation. An empirical model, which considers the ratio between the boundary layer kinetic and vortex ring formation energies, is presented for extrapolating the current results to larger length scales. The calculated critical velocity value at zero pressure for a sphere that mimics an electron bubble is in good agreement with the previous experimental observations at low temperatures. The stability of the system against symmetry breaking was linked to its ability to excite quantized Kelvin waves around the vortex rings during the vortex shedding process. At high vortex ring emission rates, the downstream dynamics showed complex vortex ring fission and reconnection events that appear similar to those seen in previous Gross-Pitaevskii theory-based calculations, and which mark the onset of turbulent behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا