ﻻ يوجد ملخص باللغة العربية
The rate at which dependencies between future and past observations decay in a random process may be quantified in terms of mixing coefficients. The latter in turn appear in strong laws of large numbers and concentration of measure results for dependent random variables. Questions regarding what rates are possible for various notions of mixing have been posed since the 1960s, and have important implications for some open problems in the theory of strong mixing conditions. This paper deals with $eta$-mixing, a notion defined in [Kontorovich and Ramanan], which is closely related to $phi$-mixing. We show that there exist measures on finite sequences with essentially arbitrary $eta$-mixing coefficients, as well as processes with arbitrarily slow mixing rates.
We present a method for constructing optimized equations for the modular curve X_1(N) using a local search algorithm on a suitably defined graph of birationally equivalent plane curves. We then apply these equations over a finite field F_q to efficie
Eigenproblems frequently arise in theory and applications of stochastic processes, but only a few have explicit solutions. Those which do, are usually solved by reduction to the generalized Sturm--Liouville theory for differential operators. This inc
We study the asymptotic behavior of wavelet coefficients of random processes with long memory. These processes may be stationary or not and are obtained as the output of non--linear filter with Gaussian input. The wavelet coefficients that appear in
Concentration-compactness is used to prove compactness of maximising sequences for a variational problem governing symmetric steady vortex-pairs in a uniform planar ideal fluid flow, where the kinetic energy is to be maximised and the constraint set
We continue our study on counting irreducible polynomials over a finite field with prescribed coefficients. We set up a general combinatorial framework using generating functions with coefficients from a group algebra which is generated by equivalent