ﻻ يوجد ملخص باللغة العربية
We present the number of dimers $N_d(n)$ on the Sierpinski gasket $SG_d(n)$ at stage $n$ with dimension $d$ equal to two, three, four or five, where one of the outmost vertices is not covered when the number of vertices $v(n)$ is an odd number. The entropy of absorption of diatomic molecules per site, defined as $S_{SG_d}=lim_{n to infty} ln N_d(n)/v(n)$, is calculated to be $ln(2)/3$ exactly for $SG_2(n)$. The numbers of dimers on the generalized Sierpinski gasket $SG_{d,b}(n)$ with $d=2$ and $b=3,4,5$ are also obtained exactly. Their entropies are equal to $ln(6)/7$, $ln(28)/12$, $ln(200)/18$, respectively. The upper and lower bounds for the entropy are derived in terms of the results at a certain stage for $SG_d(n)$ with $d=3,4,5$. As the difference between these bounds converges quickly to zero as the calculated stage increases, the numerical value of $S_{SG_d}$ with $d=3,4,5$ can be evaluated with more than a hundred significant figures accurate.
We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage $n$, whose asymptotic behavior is given by $frac{sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac{5^2 times 7^2 times 17^2}{2^{12} times 3^5 tim
The number of independent sets is equivalent to the partition function of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets $m_{d,b}(n)$ on the generalized Sierpinski gasket $SG
We present the numbers of ice model and eight-vertex model configurations (with Boltzmann factors equal to one), I(n) and E(n) respectively, on the two-dimensional Sierpinski gasket SG(n) at stage $n$. For the eight-vertex model, the number of config
We study the number of acyclic orientations on the generalized two-dimensional Sierpinski gasket $SG_{2,b}(n)$ at stage $n$ with $b$ equal to two and three, and determine the asymptotic behaviors. We also derive upper bounds for the asymptotic growth
As a basic dynamic feature on complex networks, the property of random walk has received a lot of attention in recent years. In this paper, we first studied the analytical expression of the mean global first passage time (MGFPT) on the 3-dimensional