ﻻ يوجد ملخص باللغة العربية
We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. As announced in [Brandao and Plenio, Nature Physics 4, 8 (2008)], and in stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identified as the regularized relative entropy of entanglement, which is shown to be equal to a regularized and smoothed version of the logarithmic robustness of entanglement. Here we give a rigorous proof of this result, which is fundamentally based on a certain recent extension of quantum Steins Lemma proved in [Brandao and Plenio, Commun. Math. 295, 791 (2010)], giving the best measurement strategy for discriminating several copies of an entangled state from an arbitrary sequence of non-entangled states, with an optimal distinguishability rate equal to the regularized relative entropy of entanglement. We moreover analyse the connection of our approach to axiomatic formulations of the second law of thermodynamics.
This work is originally a Cambridge Part III essay paper. Quantum complexity arises as an alternative measure to the Fubini metric between two quantum states. Given two states and a set of allowed gates, it is defined as the least complex unitary ope
The distillable entanglement of a bipartite quantum state does not exceed its entanglement cost. This well known inequality can be understood as a second law of entanglement dynamics in the asymptotic regime of entanglement manipulation, excluding th
The second law of classical thermodynamics, based on the positivity of the entropy production, only holds for deterministic processes. Therefore the Second Law in stochastic quantum thermodynamics may not hold. By making a fundamental connection betw
Theoretical methods for empirical state determination of entangled two-level systems are analyzed in relation to information theory. We show that hidden variable theories would lead to a Shannon index of correlation between the entangled subsystems w
Sommerfeld called the first part of the second law to be the entropy axiom, which is about the existence of the state function entropy. It was usually thought that the second part of the second law, which is about the non-decreasing nature of entropy