ترغب بنشر مسار تعليمي؟ اضغط هنا

Dominant next-to-leading order QCD corrections to Higgs plus three jet production in vector-boson fusion

215   0   0.0 ( 0 )
 نشر من قبل Terrance Figy
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the calculation of the dominant next to leading order QCD corrections to Higgs boson production in association with three jets via vector boson fusion in the form of a NLO parton-level Monte Carlo program. QCD corrections to integrated cross sections are modest, while the shapes of some kinematical distributions change appreciably at NLO. Scale uncertainties are shown to be reduced at NLO for the total cross section and for distributions. We consider a central jet veto at the LHC and analyze the veto probability for typical vector boson fusion cuts. Scale uncertainties of the veto probability are sufficiently small at NLO for precise Higgs coupling measurements at the LHC.



قيم البحث

اقرأ أيضاً

173 - Terrance Figy 2008
We present the NLO QCD corrections for light Higgs pair production via vector boson fusion at the LHC within the CP conserving type II two higgs doublet model in the form of a fully flexible parton--level Monte Carlo program. Scale dependences on int egrated cross sections and distributions are reduced with QCD K-factors of order unity.
We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs and the leading jets. The results are obtained with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.
The weak-boson fusion process is expected to provide crucial information on Higgs boson couplings at the Large Hadron Collider at CERN. The achievable statistical accuracy demands comparison with next-to-leading order QCD calculations, which are pres ented here in the form of a fully flexible parton Monte Carlo program. QCD corrections are determined for jet distributions and are shown to be modest, of order 5 to 10% in most cases, but reaching 30% occasionally. Remaining scale uncertainties range from order 5% or less for distributions to below +-2% for the Higgs boson cross section in typical weak-boson fusion search regions.
The total cross section for Higgs production in bottom-quark annihilation is evaluated at next-to-next-to-leading order (NNLO) in QCD. This is the first time that all terms at order alpha_s^2 are taken into account. We find a greatly reduced scale de pendence with respect to lower order results, for both the factorization and the renormalization scales. The behavior of the result is consistent with earlier determinations of the appropriate factorization scale for this process of mu_F ~ M_H/4, and supports the validity of the bottom parton density approach for computing the total inclusive rate. We present precise predictions for the cross section at the Tevatron and the LHC.
The implementation of the full next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production at hadron colliders such as the LHC within the Matchbox NLO framework of the Herwig++ event generator is discussed. We pre sent numerical results for integrated cross sections and kinematic distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا