ترغب بنشر مسار تعليمي؟ اضغط هنا

Discretely guided electromagnetic effective medium

132   0   0.0 ( 0 )
 نشر من قبل Michael J. Naughton
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A material comprised of an array of subwavelength coaxial waveguides decomposes incident electromagnetic waves into spatially discrete wave components, propagates these components without frequency cut-off, and reassembles them on the far side of the material. The propagation of these wave components is fully controlled by the physical properties of the waveguides and their geometrical distribution in the array. This allows for an exceptional degree of control over the electromagnetic response of this effective medium, with numerous potential applications. With the development of nanoscale subwavelength coaxial waveguides, these applications (including metamaterial functionality) can be enabled in the visible frequency range.

قيم البحث

اقرأ أيضاً

To further reduce the lattice thermal conductivity of thermoelectric materials, the technique of embedding nano-inclusions into bulk matrix materials, in addition to point defect scattering via alloying, was widely applied. Differential Effective Med ium (DEM) method was employed to calculate two-phase heterogeneous systems. However, in most effective medium treatment, the interface scattering of matrix phonons by embedded nanoparticle was underestimated by adopting particles projected area as scattering cross-section. Herein, modified cross-section calculations, as well as grain sizes dispersions, are applied in DEM, with the calculations then validated by comparing with Monte-Carlo simulations and existing experimental data. Predictions of lattice thermal conductivity reduction on in-situ formed Full Heusler(FH)/Half Heusler(HH) nano/matrix system are discussed.
206 - Jack Edwards 2021
The convergence between effective medium theory and pore-network modelling is examined. Electrical conductance on two and three-dimensional cubic resistor networks is used as an example of transport through composite materials or porous media. Effect ive conductance values are calculated for the networks using effective medium theory and pore-network models. The convergence between these values is analyzed as a function of network size. Effective medium theory results are calculated analytically and numerically. Pore-network results are calculated numerically using Monte Carlo sampling. The reduced standard deviations of the Monte Carlo sampled pore-network results are examined as a function of network size. Finally, a quasi-two-dimensional network is investigated to demonstrate the limitations of effective medium theory when applied to thin porous media. Power law fits are made to these data to develop simple models governing convergence. These can be used as a guide for future research that uses both effective medium theory and pore-network models.
We have performed electrical resistivity and DC magnetization measurements as a function of temperature, on polycrystalline samples of phase separated LaPrCaMnO. We have used the General Effective Medium Theory to obtain theoretical resistivity vs. t emperature curves corresponding to different fixed ferromagnetic volume fraction values, assuming that the sample is a mixture of typical metallic like and insulating manganites. By comparing this data with our experimental resistivity curves we have obtained the relative ferromagnetic volume fraction of our sample as a function of temperature. This result matches with the corresponding magnetization data in excellent agreement, showing that a mixed phase scenario is the key element to explain both the magnetic and transport properties in the present compound.
The main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.
Superparamagnetic {gamma}-Fe2O3 nanoparticles (5 nm diameter) were synthesized in water. The bare particles exhibit good colloidal stability at ~ pH 2 because of the strong electrostatic repulsion with a surface charge of +25 mV. The polyacrylic acid (PAA)-coated particles exhibit remarkable colloidal stability at ~ pH 7 with abundant free carboxyl groups as reactive sites for subsequent functionalization. In this work, we used zeta potential analysis, transmission electron microscopy, small angle X-ray scattering, and Inductively coupled plasma mass spectrometry to investigate the adsorption behavior of U (VI) on bare and coated colloidal superparamagnetic nanoparticles at pH 2 and pH 7. At pH 2, uranyl ion (UO22+) absorbed on the surface of the bare particles with decreasing particle surface charge. This induced particle agglomeration. At pH 7, uranyl ion (UO22+) hydrolyzed and formed plate-like particles of uranium hydroxide that were ~ 50 nm in diameter. The PAA-coated iron oxide nanoparticles absorbed on the surface of these U (VI) hydroxide plates to form large aggregates that precipitate to the bottom of the dispersion. At both pH 2 and pH 7, the resulting U (VI)/nanoparticle complex can be easily collected and extracted from the aqueous environment via an external magnetic field. The results show that both bare and polymer-coated superparamagnetic {gamma}-Fe2O3 nanoparticles are potential absorbents for removing U (VI) from water.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا