ﻻ يوجد ملخص باللغة العربية
A mistake concerning the ultra textit{LI}-ideal of a lattice implication algebra is pointed out, and some new sufficient and necessary conditions for an textit{LI}-ideal to be an ultra textit{LI}-ideal are given. Moreover, the notion of an textit{LI}-ideal is extended to MTL-algebras, the notions of a (prime, ultra, obstinate, Boolean) textit{LI}-ideal and an textit{ILI}-ideal of an MTL-algebra are introduced, some important examples are given, and the following notions are proved to be equivalent in MTL-algebra: (1) prime proper textit{LI}-ideal and Boolean textit{LI}-ideal, (2) prime proper textit{LI}-ideal and textit{ILI}-ideal, (3) proper obstinate textit{LI}-ideal, (4) ultra textit{LI}-ideal.
In this article we investigate the notion and basic properties of Boolean algebras and prove the Stones representation theorem. The relations of Boolean algebras to logic and to set theory will be studied and, in particular, a neat proof of completen
For any MV-algebra $A$ we equip the set $I(A)$ of intervals in $A$ with pointwise L ukasiewicz negation $ eg x={ eg alphamid alphain x}$, (truncated) Minkowski sum, $xoplus y={alphaoplus betamid alpha in x,,,betain y}$, pointwise L ukasiewicz conjunc
Fuzzy Epistemic Logic is an important formalism for approximate reasoning. It extends the well known basic propositional logic BL, introduced by Hajek, by offering the ability to reason about possibility and necessity of fuzzy propositions. We consid
The only C*-algebras that admit elimination of quantifiers in continuous logic are $mathbb{C}, mathbb{C}^2$, $C($Cantor space$)$ and $M_2(mathbb{C})$. We also prove that the theory of C*-algebras does not have model companion and show that the theory
The correspondence found by Faulkner between inner ideals of the Lie algebra of a simple algebraic group and shadows on long root groups of the building associated with the algebraic group is shown to hold in greater generality (in particular, over p