ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. II. Mixed Trends in VB10 and LSR1835+32 and the Possible Role of Rotation

129   0   0.0 ( 0 )
 نشر من قبل Edo Berger
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] As part of our on-going investigation of magnetic activity in ultracool dwarfs we present simultaneous radio, X-ray, UV, and optical observations of LSR1835+32 (M8.5), and simultaneous X-ray and UV observations of VB10 (M8), both with a duration of about 9 hours. LSR1835+32 exhibits persistent radio emission and H-alpha variability on timescales of ~0.5-2 hr. The detected UV flux is consistent with photospheric emission, and no X-ray emission is detected to a deep limit of L_X/L_bol<10^-5.7. The H-alpha and radio emission are temporally uncorrelated, and the ratio of radio to X-ray luminosity exceeds the correlation seen in F-M6 stars by >2x10^4. Similarly, L_Halpha/L_X>10 is at least 30 times larger than in early M dwarfs, and eliminates coronal emission as the source of chromospheric heating. The lack of radio variability during four rotations of LSR1835+32 requires a uniform stellar-scale field of ~10 G, and indicates that the H-alpha variability is dominated by much smaller scales, <10% of the chromospheric volume. VB10, on the other hand, shows correlated flaring and quiescent X-ray and UV emission, similar to the behavior of early M dwarfs. Delayed and densely-sampled optical spectra exhibit a similar range of variability amplitudes and timescales to those seen in the X-rays and UV, with L_Halpha/L_X~1. Along with our previous observations of the M8.5 dwarf TVLM513-46546 we conclude that late M dwarfs exhibit a mix of activity patterns, which points to a transition in the structure and heating of the outer atmosphere by large-scale magnetic fields. We find that rotation may play a role in generating the fields as evidenced by a tentative correlation between radio activity and rotation velocity. The X-ray emission, however, shows evidence for super-saturation at vsini>25 km/s.



قيم البحث

اقرأ أيضاً

[Abridged] As part of our on-going investigation into the magnetic field properties of ultracool dwarfs, we present simultaneous radio, X-ray, and H-alpha observations of three M9.5-L2.5 dwarfs (BRI0021-0214, LSR060230.4+391059, and 2MASSJ052338.2-14 0302). We do not detect X-ray or radio emission from any of the three sources, despite previous detections of radio emission from BRI0021 and 2M0523-14. Steady and variable H-alpha emission are detected from 2M0523-14 and BRI0021, respectively, while no H-alpha emission is detected from LSR0602+39. Overall, our survey of nine M8-L5 dwarfs doubles the number of ultracool dwarfs observed in X-rays, and triples the number of L dwarfs, providing in addition the deepest limits to date, log(L_X/L_bol)<-5. With this larger sample we find the first clear evidence for a substantial reduction in X-ray activity, by about two orders of magnitude, from mid-M to mid-L dwarfs. We find that the decline in both X-rays and H-alpha roughly follows L_{X,Halpha}/L_bol ~ 10^[-0.4x(SP-M6)] for SP>M6. In the radio band, however, the luminosity remains relatively unchanged from M0 to L4, leading to a substantial increase in L_rad/L_bol. Our survey also provides the first comprehensive set of simultaneous radio/X-ray/H-alpha observations of ultracool dwarfs, and reveals a clear breakdown of the radio/X-ray correlation beyond spectral type M7, evolving smoothly from L_{ u,rad}/L_X ~ 10^-15.5 to ~10^-11.5 Hz^-1 over the narrow spectral type range M7-M9. This breakdown reflects the substantial reduction in X-ray activity beyond M7, but its physical origin remains unclear since, as evidenced by the uniform radio emission, there is no drop in the field dissipation and particle acceleration efficiency.
[Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a duration of 9 hours. These observations are part of a program to study the origin of magnetic activ ity in ultracool dwarfs, and its impact on chromospheric and coronal emission. Here we detect steady quiescent radio emission superposed with multiple short-duration, highly polarized flares; there is no evidence for periodic bursts previously reported for this object, indicating their transient nature. We also detect soft X-ray emission, with L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a possible weak X-ray flare. TVLM513-46546 continues the trend of severe violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of magnitude. From the optical spectroscopy we find that the Balmer line luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that, unlike in early M dwarfs, chromospheric heating may not be due to coronal X-ray emission. More importantly, we detect a sinusoidal H-alpha light curve with a period of 2 hr, matching the rotation period of TVLM513-46546. This is the first known example of such Balmer line behavior, which points to a co-rotating chromospheric hot spot or an extended magnetic structure, with a covering fraction of about 50%. This feature may be transitory based on the apparent decline in light curve peak during the four observed maxima. From the radio data we infer a large scale steady magnetic field of ~100 G, in good agreement with the value required for confinement of the X-ray emitting plasma. The radio flares, on the other hand, are produced in a component of the field with a strength of ~3 kG and a likely multi-polar configuration.
270 - M. McLean , 2011
[Abridged] We present a new radio survey of about 100 late-M and L dwarfs undertaken with the VLA. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. Combining the new sample with results from our previou s studies and from the literature, we compile the largest sample to date of ultracool dwarfs with radio observations and measured rotation velocities (167 objects). In the spectral type range M0-M6 we find a radio activity-rotation relation, with saturation at log(L_rad/L_bol) 10^(-7.5) above vsini~5 km/s, similar to the relation in H-alpha and X-rays. However, at spectral types >M7 the ratio of radio to bolometric luminosity increases regardless of rotation velocity, and the scatter in radio luminosity increases. In particular, while the most rapid rotators (vsini>20 km/s) exhibit super-saturation in X-rays and H-alpha, this effect is not seen in the radio. We also find that ultracool dwarfs with vsini>20 km/s have a higher radio detection fraction by about a factor of 3 compared to objects with vsini<10 km/s. When measured in terms of the Rossby number (Ro), the radio activity-rotation relation follows a single trend and with no apparent saturation from G to L dwarfs and down to Ro~10^-3; in X-rays and H-alpha there is clear saturation at Ro<0.1, with super-saturation beyond M7. A similar trend is observed for the radio surface flux (L_rad/R^2) as a function of Ro. The continued role of rotation in the overall level of radio activity and in the fraction of active sources, and the single trend of L_rad/L_bol and L_rad/R^2 as a function of Ro from G to L dwarfs indicates that rotation effects are important in regulating the topology or strength of magnetic fields in at least some fully-convective dwarfs. The fact that not all rapid rotators are detected in the radio provides additional support to the idea of dual dynamo states.
146 - P. K. G. Williams 2014
We present multi-epoch simultaneous radio, optical, H{alpha}, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 $pm$ 0.0001 and 3.7130 $pm$ 0.0002 hr. While these differ by only ~2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The systems radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational campaign. We interpret the last of these as a gyrosynchrotron feature associated with large-scale magnetic fields and a cool, equatorial plasma torus. However, the persistent rapid flares at all rotational phases imply that small-scale magnetic loops are also present and reconnect nearly continuously. We present an SED of the blended system spanning more than 9 orders of magnitude in wavelength. The significant magnetism present in NLTT 33370 AB will affect its fundamental parameters, with the components radii and temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we suggest spatially resolved observations that could clarify many aspects of this systems nature.
Observations of magnetic activity indicators in solar-type stars exhibit a relationship with rotation with an increase until a saturation level and a moderate decrease in activity in the very fastest rotators (supersaturation). While X-ray data have suggested that this relationship is strongly violated in ultracool dwarfs (UCDs; spectral type >M7), the limited number of X-ray detections has prevented firm conclusions. In this paper, we analyze the X-ray activity-rotation relation in 38 ultracool dwarfs. Our sample represents the largest catalog of X-ray active ultracool dwarfs to date, including seven new and four previously-unpublished Chandra observations presented in a companion paper. We identify a substantial number of rapidly-rotating UCDs with X-ray activity extending two orders of magnitude below the expected saturation level and measure a supersaturation-type anticorrelation between rotation and X-ray activity. The scatter in UCD X-ray activity at a fixed rotation is ~3 times larger than that in earlier-type stars. We discuss several mechanisms that have been proposed to explain the data, including centrifugal stripping of the corona, and find them to be inconsistent with the observed trends. Instead, we suggest that an additional parameter correlated with both X-ray activity and rotation is responsible for the observed effects. Building on the results of Zeeman-Doppler imaging of UCD magnetic fields and our companion study of radio/X-ray flux ratios, we argue that this parameter is the magnetic field topology, and that the large scatter in UCD X-ray fluxes reflects the presence of two dynamo modes that produce distinct topologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا