ﻻ يوجد ملخص باللغة العربية
We studied, both analytically and numerically, complex excitable networks, in which connections are time dependent and some of the nodes remain silent at each time step. More specifically, (a) there is a heterogenous distribution of connection weights and, depending on the current degree of order, some connections are reinforced/weakened with strength Phi on short-time scales, and (b) only a fraction rho of nodes are simultaneously active. The resulting dynamics has attractors which, for a range of Phi values and rho exceeding a threshold, become unstable, the instability depending critically on the value of rho. We observe that (i) the activity describes a trajectory in which the close neighborhood of some of the attractors is constantly visited, (ii) the number of attractors visited increases with rho, and (iii) the trajectory may change from regular to chaotic and vice versa as rho is, even slightly modified. Furthermore, (iv) time series show a power-law spectra under conditions in which the attractors space is most efficiently explored. We argue on the possible qualitative relevance of this phenomenology to networks in several natural contexts.
In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we fi
We derive the spectral properties of adjacency matrix of complex networks and of their Laplacian by the replica method combined with a dynamical population algorithm. By assuming the order parameter to be a product of Gaussian distributions, the pres
We present a thorough inspection of the dynamical behavior of epidemic phenomena in populations with complex and heterogeneous connectivity patterns. We show that the growth of the epidemic prevalence is virtually instantaneous in all networks charac
We study the transition between the strong and weak disorder regimes in the scaling properties of the average optimal path $ell_{rm opt}$ in a disordered ErdH{o}s-Renyi (ER) random network and scale-free (SF) network. Each link $i$ is associated with
We study the very long-range bond-percolation problem on a linear chain with both sites and bonds dilution. Very long range means that the probability $p_{ij}$ for a connection between two occupied sites $i,j$ at a distance $r_{ij}$ decays as a power