ترغب بنشر مسار تعليمي؟ اضغط هنا

Medium-evolved fragmentation functions

251   0   0.0 ( 0 )
 نشر من قبل Nestor Armesto
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Medium-induced gluon radiation is usually identified as the dominant dynamical mechanism underling the {it jet quenching} phenomenon observed in heavy-ion collisions. In its actual implementation, multiple medium-induced gluon emissions are assumed to be independent, leading, in the eikonal approximation, to a Poisson distribution. Here, we introduce a medium term in the splitting probabilities so that both medium and vacuum contributions are included on the same footing in a DGLAP approach. The improvements include energy-momentum conservation at each individual splitting, medium-modified virtuality evolution and a coherent implementation of vacuum and medium splitting probabilities. Noticeably, the usual formalism is recovered when the virtuality and the energy of the parton are very large. This leads to a similar description of the suppression observed in heavy-ion collisions with values of the transport coefficient of the same order as those obtained using the {it quenching weights}.



قيم البحث

اقرأ أيضاً

We discuss preliminary results on medium-modified fragmentation functions obtained in a combined NLO fit to data on semi-inclusive deep inelastic scattering off nuclei and hadroproduction in deuteron-gold collisions.
161 - Wei Chen , Shanshan Cao , Tan Luo 2020
Coupled linear Boltzmann transport and hydrodynamic (CoLBT-hydro) model has been developed for simultaneous simulations of jet propagation and jet-induced medium excitation in heavy-ion collisions. Within this coupled approach, the final reconstructe d jets in heavy-ion collisions include not only hadrons from the hadronization of medium modified jet shower partons from the linear Boltzmann transport (LBT) but also hadrons from the freeze-out of the jet-induced medium excitation in the hydrodynamic evolution of the bulk medium. Using the CoLBT-hydro model, we study medium modification of the fragmentation functions of $gamma$-triggered jets in high-energy heavy-ion collisions at the Large Hadron Collider. The CoLBT-hydro model is shown to describe the experimental data not only on the suppression of leading hadrons within the jet cone at large momentum fraction $z_gamma=p_T^h/p_T^gamma$ relative to the transverse momentum of the trigger photon due to parton energy loss but also the enhancement of soft hadrons at small $z_gamma$ and $z_{rm jet}=p_T^h/p_T^{rm jet}$ due to jet-induced medium excitation. There is no suppression of the fragmentation function, however, at large momentum fraction $z_{rm jet}$ relative to the transverse momentum of the reconstructed jet due to trigger bias and medium modification of quark to gluon jet fraction. For jets whose final transverse momenta are comparable to or larger than that of the trigger photon, the trigger bias can lead to enhancement of the jet fragmentation function at large $z_{rm jet}$.
We develop the theoretical framework needed to study the distribution of hadrons with general polarization inside jets, with and without transverse momentum measured with respect to the standard jet axis. The key development in this paper, referred t o as polarized jet fragmentation functions, opens up new opportunities to study both collinear and transverse momentum dependent (TMD) fragmentation functions. As two examples of the developed framework, we study longitudinally polarized collinear $Lambda$ and transversely polarized TMD $Lambda$ production inside jets in both $pp$ and $ep$ collisions. We find that both observables have high potential in constraining spin-dependent fragmentation functions with sizeable asymmetries predicted, in particular, at the future Electron-Ion Collider.
We make a systematic study of the isospin symmetry of fragmentation functions by taking decay contributions into account. We assume the isospin symmetry in strong interactions and show that in the unpolarized case the isospin symmetry is held for fra gmentation functions of $Lambda$ and only tiny violations are allowed for other hadrons such as nucleon and pions due to the contributions from weak decays. We present a rough estimate of the magnitudes of such violations. In the polarized case, we show that the isospin symmetry violation for $Lambda$ production should be tiny and the recent Belle data on the transverse polarization of $Lambda$ can be reproduced if the isospin symmetry is kept in the corresponding polarized fragmentation functions.
We present a quantum-mechanical description of quark-hadron fragmentation in a nuclear environment. It employs the path-integral formulation of quantum mechanics, which takes care of all phases and interferences, and which contains all relevant time scales, like production, coherence, formation, etc. The cross section includes the probability of pre-hadron (colorless dipole) production both inside and outside the medium. Moreover, it also includes inside-outside production, which is a typical quantum-mechanical interference effect (like twin-slit electron propagation). We observe a substantial suppression caused by the medium, even if the pre-hadron is produced outside the medium and no energy loss is involved. This important source of suppression is missed in the usual energy-loss scenario interpreting the effect of jet quenching observed in heavy ion collisions. This may be one of the reasons of a too large gluon density, reported by such analyzes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا