ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-THz electrodynamics of the graphene-like superconductor CaAlSi

253   0   0.0 ( 0 )
 نشر من قبل Leonetta Baldassarre
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first optical study of CaAlSi, a superconductor which displays both the crystal structure of MgB2 and the electronic band structure of intercalated graphites. The reflectivity of a CaAlSi single crystal was measured down to sub-THz frequencies and to 3.3 K, with the use of Coherent Synchrotron Radiation. A superconducting gap in the hexagonal planes, two gaps along the c axis were found and measured, as expected from the structure of the CaAlSi Fermi surface. The anisotropic optical parameters of the normal state were also determined.

قيم البحث

اقرأ أيضاً

69 - M. Beyer , M. Beck , D. Stadter 2011
Dynamics of depletion and recovery of superconducting state in La2-xSrxCuO_4 thin films is investigated utilizing optical pump-probe and optical pump - THz probe techniques as a function of temperature and excitation fluence. The absorbed energy dens ity required to suppress superconductivity is found to be about 8 times higher than the thermodynamically determined condensation energy density and nearly temperature independent between 4 and 25 K. These findings indicate that during the time when superconducting state suppression takes place (~0.7 ps), a large part (nearly 90%) of the energy is transferred to the phonons with energy lower than twice the maximum value of of the SC gap and only 10% is spent on Cooper pair breaking.
82 - Yuan Li , G. Yu , M. K. Chan 2012
There exists increasing evidence that the phase diagram of the high-transition temperature (Tc) cuprate superconductors is controlled by a quantum critical point. One distinct theoretical proposal is that, with decreasing hole-carrier concentration, a transition occurs to an ordered state with two circulating orbital currents per CuO2 square. Below the pseudogap temperature T* (T* > Tc), the theory predicts a discrete order parameter and two weakly-dispersive magnetic excitations in structurally simple compounds that should be measurable by neutron scattering. Indeed, novel magnetic order and one such excitation were recently observed. Here, we demonstrate for tetragonal HgBa2CuO4+d the existence of a second excitation with local character, consistent with the theory. The excitations mix with conventional antiferromagnetic fluctuations, which points toward a unifying picture of magnetism in the cuprates that will likely require a multi-band description.
We examine the effects of a phenomenological pseudogap on the T=0 K phase diagram of a high temperature superconductor within a self-consistent model which exhibits a d-wave pairing symmetry. At the mean-field level the presence of a pseudogap in the normal phase of the high temperature superconductor is proved to be essential for the existence of a metallic--like state in the density versus interaction phase diagram. In the small density limit, at high attractive interaction, bosonic--like degrees of freedom are likely to emerge. Our result should be relevant for underdoped high temperature superconductors, where there is a strong evidence for the presence of a pseudogap in the excitation spectrum of the normal state quasiparticles.
290 - T. Mori , E.J. Nicol , S. Shiizuka 2008
New THz data on the optical conductivity of Pb are presented as well as a detailed Eliashberg analysis with particular emphasis on phonon-assisted processes not included in a BCS approach. Consideration of the optical self-energy instead of the condu ctivity itself helps highlight the differences with BCS predictions. Predicted coherence peaks are observed in the optical scattering rates. Impurities enhance the optical effective mass at zero frequency by an order of magnitude and induce a large peak at twice the gap in agreement with theory. This work illustrates the usefulness of the optical self-energy for the analysis of data.
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lam bda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO) crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and conclude that the electron-doped cuprate superconductors have nodes in the superconducting gap. Furthermore, using the surface impedance, we have derived the real part of the conductivity, sigma_1(T), below T_c and found a behavior similar to that observed in hole-doped cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا