ترغب بنشر مسار تعليمي؟ اضغط هنا

Are the compact star clusters in M82 evolving towards globular clusters?

381   0   0.0 ( 0 )
 نشر من قبل Y. D. Mayya
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y.D. Mayya




اسأل ChatGPT حول البحث

Recent HST/ACS images of M82 covering the entire galaxy have been used to detect star clusters. The galaxy is known to contain a young population (age < 10 Myr) in its starburst nucleus, surrounded by a post-starburst disk of age < 1 Gyr. We detect more than 650 star clusters in this galaxy, nearly 400 of them in the post-starburst disk. These data have been used to derive the luminosity, mass and size functions separately for the young nuclear, and intermediate-age disk clusters. In this contribution, we discuss the evolutionary status of these clusters, especially, on the chances of some of these clusters surviving to become old globular clusters.

قيم البحث

اقرأ أيضاً

We study the compact binary population in star clusters, focusing on binaries containing black holes, using a self-consistent Monte Carlo treatment of dynamics and full stellar evolution. We find that the black holes experience strong mass segregatio n and become centrally concentrated. In the core the black holes interact strongly with each other and black hole-black hole binaries are formed very efficiently. The strong interactions, however, also destroy or eject the black hole-black hole binaries. We find no black hole-black hole mergers within our simulations but produce many hard escapers that will merge in the galactic field within a Hubble time. We also find several highly eccentric black hole-black hole binaries that are potential LISA sources, suggesting that star clusters are interesting targets for space-based detectors. We conclude that star clusters must be taken into account when predicting compact binary population statistics.
We have studied globular cluster systems (GCSs) around elliptical galaxies in Hickson compact groups using multi-band deep, high quality images from Keck, VLT and CFHT. Analyzing the luminosity functions, specific frequencies, color and spatial distr ibutions, we could determine the properties of the GCSs of those galaxies and trace their star formation histories. We have found poor populations, concentrated toward the center of the galaxies, with bimodal color distributions. The study of GCSs around galaxies in small groups are a blank on the globular cluster literature.
We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum . The main goal is to verify whether the dynamical friction time (t_DF) develops a non-monotonic radial-dependence that could explain the bimodality of the Blue Straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t_DF are expected to be dependent on radius. We find that, in spite of the presence of different masses, t_DF is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This because the radial dependence of t_DF is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the BSS population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimates of t_DF within the half-mass radius.
Understanding the formation and evolution of young star clusters requires quantitative statistical measures of their structure. We investigate the structures of observed and modelled star-forming clusters. By considering the different evolutionary cl asses in the observations and the temporal evolution in models of gravoturbulent fragmentation, we study the temporal evolution of the cluster structures. We apply different statistical methods, in particular the normalised mean correlation length and the minimum spanning tree technique. We refine the normalisation of the clustering parameters by defining the area using the normalised convex hull of the objects and investigate the effect of two-dimensional projection of three-dimensional clusters. We introduce a new measure $xi$ for the elongation of a cluster. It is defined as the ratio of the cluster radius determined by an enclosing circle to the cluster radius derived from the normalised convex hull. The mean separation of young stars increases with the evolutionary class, reflecting the expansion of the cluster. The clustering parameters of the model clusters correspond in many cases well to those from observed ones, especially when the $xi$ values are similar. No correlation of the clustering parameters with the turbulent environment of the molecular cloud is found, indicating that possible influences of the environment on the clustering behaviour are quickly smoothed out by the stellar velocity dispersion. The temporal evolution of the clustering parameters shows that the star cluster builds up from several subclusters and evolves to a more centrally concentrated cluster, while the cluster expands slower than new stars are formed.
353 - V. Vansevicius 2009
We have carried out a survey of compact star clusters (apparent size <3 arcsec) in the southwest part of the M31 galaxy, based on the high-resolution Suprime-Cam images (17.5 arcmin x 28.5 arcmin), covering ~15% of the deprojected galaxy disk area. T he UBVRI photometry of 285 cluster candidates (V < 20.5 mag) was performed using frames of the Local Group Galaxies Survey. The final sample, containing 238 high probability star cluster candidates (typical half-light radius r_h ~ 1.5 pc), was selected by specifying a lower limit of r_h > 0.15 arcsec (>0.6 pc). We derived cluster parameters based on the photometric data and multiband images by employing simple stellar population models. The clusters have a wide range of ages from ~5 Myr (young objects associated with 24 um and/or Ha emission) to ~10 Gyr (globular cluster candidates), and possess mass in a range of 3.0 < log(m/M_sol) < 4.3 peaking at m ~ 4000 M_sol. Typical age of these intermediate-mass clusters is in the range of 30 Myr < t < 3 Gyr, with a prominent peak at ~70 Myr. These findings suggest a rich intermediate-mass star cluster population in M31, which appears to be scarce in the Milky Way galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا