ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the Outer Disks and Halos of Nearby Galaxies

182   0   0.0 ( 0 )
 نشر من قبل Anil C. Seth
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Anil Seth




اسأل ChatGPT حول البحث

In a hierarchical merging scenario, the outer parts of a galaxy are a fossil record of the galaxys early history. Observations of the outer disks and halos of galaxies thus provide a tool to study individual galaxy histories and test formation theories. Locally, an impressive effort has been made to understand the halo of the Milky Way, Andromeda, and M33. However, due to the stochastic nature of halo formation, a better understanding of this process requires a large sample of galaxies with known halo properties. The GHOSTS project (PI: R. de Jong) aims to characterize the halos and outer portions of 14 nearby (D=4-14 Mpc) spiral galaxies using the Hubble Space Telescope. Detection of individual stars in the outer parts of these galaxies enables us to study both the morphological properties of the galaxies, and determine the stars metallicity and age.



قيم البحث

اقرأ أيضاً

The HERON project is aimed at studying halos and low surface brightness details near galaxies. In this second HERON paper we consider in detail deep imaging (down to surface brightness of ~28 mag/arcsec$^2$ in the r band) for 35 galaxies, viewed edge -on. We confirm a range of low surface brightness features previously described in the literature but also report new ones. We classify the observed outer shapes of the galaxies into three main types (and their prototypes): disc/diamond-like (NGC891), oval (NGC4302), and boxy (NGC3628). We show that the shape of the outer disc in galaxies does not often follow the general 3D model of an exponential disc: 17 galaxies in our sample exhibit oval or even boxy isophotes at the periphery. Also, we show that the less flattened the outer disc is, the more oval or boxy its structure. Many galaxies in our sample have an asymmetric outer structure. We propose that the observed diversity of the galaxy outer shapes is defined by the merger history and its intensity: if no recent multiple minor or single major merging took place, the outer shape is diamond-like or discy. On the contrary, interacting galaxies show oval outer shapes, whereas recent merging appears to transform the outer shape to boxy.
166 - Ortwin Gerhard 2010
Recent progress is summarized on the determination of the density distributions of stars and dark matter, stellar kinematics, and stellar population properties, in the extended, low surface brightness halo regions of elliptical galaxies. With integra l field absorption spectroscopy and with planetary nebulae as tracers, velocity dispersion and rotation profiles have been followed to ~4 and ~5-8 effective radii, respectively, and in M87 to the outer edge at ~150 kpc. The results are generally consistent with the known dichotomy of elliptical galaxy types, but some galaxies show more complex rotation profiles in their halos and there is a higher incidence of misalignments, indicating triaxiality. Dynamical models have shown a range of slopes for the total mass profiles, and that the inner dark matter densities in ellipticals are higher than in spiral galaxies, indicating earlier assembly redshifts. Analysis of the hot X-ray emitting gas in X-ray bright ellipticals and comparison with dynamical mass determinations indicates that non-thermal components to the pressure may be important in the inner ~10 kpc, and that the properties of these systems are closely related to their group environments. First results on the outer halo stellar population properties do not yet give a clear picture. In the halo of one bright galaxy, lower [alpha/Fe] abundances indicate longer star formation histories pointing towards late accretion of the halo. This is consistent with independent evidence for on-going accretion, and suggests a connection to the observed size evolution of elliptical galaxies with redshift.
133 - Olga K. Silchenko 2011
By studying the stellar population properties along the radius in 15 nearby S0 galaxies, I have found that the outer stellar disks are mostly old, with the SSP-equivalent ages of 8-15 Gyr, being often older than the bulges. This fact puts into doubt a currently accepted paradigm that S0 galaxies have formed at z=0.4 by quenching star formation in spiral galaxies.
220 - B. Fuchs 2008
I describe how the dynamics of galactic disks can be inferred by imaging and spectroscopy. Next I demonstrate that the decomposition of the rotation curves of spiral galaxies into the contributions by the various components of the galaxies is highly degenerate. Constraints on the decomposition can be found by considering implications for the dynamics of the galactic disks. An important diagnostic is the Toomre Q stability parameter which controls the stability of a galactic disk against local Jeans collapse. I also show how the density wave theory of galactic spiral arms can be employed to constrain the mass of a galactic disk. Applying both diagnostics to the example of NGC 2985 and discussing also the implied mass-to-light ratio I demonstrate that the inner parts of the galaxy, where the optical disk resides, are dominated by baryons. When I apply this method to the disks of low surface brightness galaxies, I find unexpectedly high mass-to light ratios. These could be explained by population synthesis models which assume a bottom heavy initial mass function similar to the recently proposed `integrated galactic initial mass function.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Ga laxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا