ترغب بنشر مسار تعليمي؟ اضغط هنا

TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes

65   0   0.0 ( 0 )
 نشر من قبل Gavin Rowell
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exciting results from H.E.S.S. point to a new population of gamma-ray sources at energies E > 10 TeV, paving the way for future studies and new discoveries in the multi-TeV energy range. Connected with these energies is the search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV gamma-ray production in a growing number of astrophysical environments. TenTen is a proposed stereoscopic array (with a suggested site in Australia) of modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here the motivation for TenTen and summarise key performance parameters.


قيم البحث

اقرأ أيضاً

TenTen is a proposed array of Imaging Atmospheric Cherenkov Telescopes (IACT) optimized for the gamma ray energy regime of 10 TeV to 100 TeV, but with a threshold of ~1 to a few TeV. It will offer a collecting area of 10 km2 above energies of 10 TeV. In the initial phase, a cell of 3 to 5 modest-sized telescopes, each with 10-30 m2 mirror area, is suggested for an Australian site. A possible expansion of the array could comprise many such cells. Here we present work on configuration and technical issues from our simulation studies of the array. Working topics include array layout, telescope size and optics, camera field of view, telescope trigger system, electronics, and site surveys.
We have conceived and implemented a multi-objective genetic algorithm (GA) code for the optimisation of an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The algorithm takes as input a series of cost functions (metrics) each describing a different objetive of the optimisation (such as effective area, angular resolution, etc.), all of which are expressed in terms of the relative position of the telescopes in the plane. The output of the algorithm is a family of geometrical arrangements which correspond to the complete set of solutions to the array optimisation problem, and differ from each other according to the relative weight given to each of the (maybe conflicting) objetives of the optimisation. Since the algorithm works with parallel optimisation it admits as many cost functions as desired, and can incorporate constraints such as budget (cost cap) for the array and topological limitations of the terrain, like geographical accidents where telescopes cannot be installed. It also admits different types of telescopes (hybrid arrays) and the number of telescopes of each type can be treated as a parameter to be optimised - constrained, for example, by the cost of each type or the energy range of interest. The purpose of the algorithm, which converges fast to optimised solutions (if compared to the time for a complete Monte Carlo Simulation of a single configuration), is to provide a tool to investigate the full parameter space of possible geometries, and help in designing complex arrays. It does not substitute a detailed Monte Carlo study, but aims to guide it. In the examples of arrays shown here we have used as metrics simple heuristic expressions describing the fundamentals of the IAC technique, but these input functions can be made as detailed or complex as desired for a given experiment.
100 - H. Krawczynski 2006
Ground-based arrays of imaging atmospheric Cherenkov telescopes have emerged as the most sensitive gamma-ray detectors in the energy range of about 100 GeV and above. The strengths of these arrays are a very large effective collection area on the ord er of 100,000 square meter, combined with excellent single photon angular and energy resolutions. The sensitivity of such detectors is limited by statistical fluctuations in the number of Cosmic Ray initiated air showers that resemble gamma-ray air showers in many ways. In this paper, we study the performance of simple event reconstruction methods when applied to simulated data of the Very Energetic Radiation Imaging Telescope Array System (VERITAS) experiment. We review methods for reconstructing the arrival direction and the energy of the primary photons, and examine means to improve on their performance. For a software threshold energy of 300 GeV (100 GeV), the methods achieve point source angular and energy resolutions of sigma[63%]= 0.1 degree (0.2 degree) and sigma[68%]= 15% (22%), respectively. The main emphasis of the paper is the discussion of gamma-hadron separation methods for the VERITAS experiment. We find that the information from several methods can be combined based on a likelihood ratio approach and the resulting algorithm achieves a gamma-hadron suppression with a quality factor that is substantially higher than that achieved with the standard methods used so far.
A fast trigger system is being designed as a potential upgrade to VERITAS, or as the basis for a future array of imaging atmospheric-Cherenkov telescopes such as AGIS. The scientific goal is a reduction of the energy threshold by a factor of 2 over t he current threshold of VERITAS of around 130 GeV. The trigger is being designed to suppress both accidentals from the night-sky background and cosmic rays. The trigger uses field-programmable gate arrays (FPGAs) so that it is adaptable to different observing modes and special physics triggers, e.g. pulsars. The trigger consists of three levels: The level 1 (L1.5) trigger operating on each telescope camera samples the discriminated pixels at a rate of 400 MHz and searches for nearest-neighbor coincidences. In L1.5, the received discriminated signals are delay-compensated with an accuracy of 0.078 ns, facilitating a short coincidence time-window between any nearest neighbor of 5 ns. The hit pixels are then sent to a second trigger level (L2) that parameterizes the image shape and transmits this information along with a GPS time stamp to the array-level trigger (L3) at a rate of 10 MHz via a fiber optic link. The FPGA-based event analysis on L3 searches for coincident time-stamps from multiple telescopes and carries out a comparison of the image parameters against a look-up table at a rate of 10 kHz. A test of the single-telescope trigger was carried out in spring 2009 on one VERITAS telescope.
Ground-based gamma-ray astronomy experienced a major boost with the advent of the present generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) in the past decade. Photons of energies >~ 0.1 TeV are a very useful tool in the study of several fundamental physics topics, which have become an important part of the research program of all major IACTs. A review of some recent results in the field is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا