ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-compact Gepner Models, Landau-Ginzburg Orbifolds and Mirror Symmetry

121   0   0.0 ( 0 )
 نشر من قبل Troost Jan
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study non-compact Gepner models that preserve sixteen or eight supercharges in type II string theories. In particular, we develop an orbifolded Landau-Ginzburg description of these models analogous to the Landau-Ginzburg formulation of compact Gepner models. The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. This gives rise to a counting of moduli which differs from the toric counting in a subtle way.



قيم البحث

اقرأ أيضاً

116 - Sujay K. Ashok , Jan Troost 2012
We consider tensor products of N=2 minimal models and non-compact conformal field theories with N=2 superconformal symmetry, and their orbifolds. The elliptic genera of these models give rise to a large and interesting class of real Jacobi forms. The tensor product of conformal field theories leads to a natural product on the space of completed mock modular forms. We exhibit families of non-compact mirror pairs of orbifold models with c=9 and show explicitly the equality of elliptic genera, including contributions from the long multiplet sector. The Liouville and cigar deformed elliptic genera transform into each other under the mirror transformation.
179 - M. Maio , A.N. Schellekens 2011
We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed . We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2) models, breaking of SO(10) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three family models occur with abundance comparable to two or four.
In this paper we study the low energy physics of Landau-Ginzburg models with N=(0,2) supersymmetry. We exhibit a number of classes of relatively simple LG models where the conformal field theory at the low energy fixed point can be explicitly identif ied. One interesting class of fixed points can be thought of as heterotic minimal models. Other examples include N=(0,2) renormalization group flows that end up at N=(2,2) minimal models and models with non-abelian symmetry.
In this paper we describe a physical realization of a family of non-compact Kahler threefolds with trivial canonical bundle in hybrid Landau-Ginzburg models, motivated by some recent non-Kahler solutions of Strominger systems, and utilizing some rece nt ideas from GLSMs. We consider threefolds given as fiber products of compact genus g Riemann surfaces and noncompact threefolds. Each genus g Riemann surface is constructed using recent GLSM tricks, as a double cover of P^1 branched over a degree 2g + 2 locus, realized via nonperturbative effects rather than as the critical locus of a superpotential. We focus in particular on special cases corresponding to a set of Kahler twistor spaces of certain hyperKahler four-manifolds, specifically the twistor spaces of R^4, C^2/Z_k, and S^1 x R^3. We check in all cases that the condition for trivial canonical bundle arising physically matches the mathematical constraint.
We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as the number of families, singlets and mirrors have an interesting tendency towards smaller values as the gauge groups approaches the Standard Model. We compare our results with an analogous class of free fermionic models. This displays similar features, but with less resolution.Finally we present a complete scan of the three family models based on the triply-exceptional combination (1,16*,16*,16*) identified originally by Gepner. We find 1220 distinct three family spectra in this case, forming 610 mirror pairs. About half of them have the gauge group SU(3) x SU(2)_L x SU(2)_R x U(1)^5, the theoretical minimum, and many others are trinification models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا