ترغب بنشر مسار تعليمي؟ اضغط هنا

The scalar perturbation spectral index n_s: WMAP sensitivity to unresolved point sources

279   0   0.0 ( 0 )
 نشر من قبل Kevin M. Huffenberger
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precision measurement of the scalar perturbation spectral index, n_s, from the Wilkinson Microwave Anisotropy Probe temperature angular power spectrum requires the subtraction of unresolved point source power. Here we reconsider this issue. First, we note a peculiarity in the WMAP temperature likelihoods response to the source correction: Cosmological parameters do not respond to increased source errors. An alternative and more direct method for treating this error term acts more sensibly, and also shifts n_s by ~0.3 sigma closer to unity. Second, we re-examine the source fit used to correct the power spectrum. This fit depends strongly on the galactic cut and the weighting of the map, indicating that either the source population or masking procedure is not isotropic. Jackknife tests appear inconsistent, causing us to assign large uncertainties to account for possible systematics. Third, we note that the WMAP teams spectrum was computed with two different weighting schemes: uniform weights transition to inverse noise variance weights at l = 500. The fit depends on such weighting schemes, so different corrections apply to each multipole range. For the Kp2 mask used in cosmological analysis, we prefer source corrections A = 0.012 +/- 0.005 muK^2 for uniform weighting and A = 0.015 +/- 0.005 muK^2 for N_obs weighting. Correcting WMAPs spectrum correspondingly, we compute cosmological parameters with our alternative likelihood, finding n_s = 0.970 +/- 0.017 and sigma_8 = 0.778 +/- 0.045 . This n_s is only 1.8 sigma from unity, compared to the ~2.6 sigma WMAP 3-year result. Finally, an anomalous feature in the source spectrum at l<200 remains, most strongly associated with W-band.

قيم البحث

اقرأ أيضاً

The Galactic Center Excess (GCE) of GeV gamma rays can be explained as a signal of annihilating dark matter or of emission from unresolved astrophysical sources, such as millisecond pulsars. Evidence for the latter is provided by a statistical proced ure---referred to as Non-Poissonian Template Fitting (NPTF)---that distinguishes the smooth distribution of photons expected for dark matter annihilation from a clumpy photon distribution expected for point sources. In this paper, we perform an extensive study of the NPTF on simulated data, exploring its ability to recover the flux and luminosity function of unresolved sources at the Galactic Center. When astrophysical background emission is perfectly modeled, we find that the NPTF successfully distinguishes between the dark matter and point source hypotheses when either component makes up the entirety of the GCE. When the GCE is a mixture of dark matter and point sources, the NPTF may fail to reconstruct the correct contribution of each component. We further study the impact of mismodeling the Galactic diffuse backgrounds, finding that while a dark matter signal could be attributed to point sources in some outlying cases for the scenarios we consider, the significance of a true point source signal remains robust. Our work enables us to comment on a recent study by Leane and Slatyer (2019) that questions prior NPTF conclusions because the method does not recover an artificial dark matter signal injected on actual Fermi data. We demonstrate that the failure of the NPTF to extract an artificial dark matter signal can be natural when point sources are present in the data---with the effect further exacerbated by the presence of diffuse mismodeling---and does not on its own invalidate the conclusions of the NPTF analysis in the Inner Galaxy.
78 - N. Jackson 2009
We present polarization measurements at 8.4, 22, and 43 GHz made with the VLA of a complete sample of extragalactic sources stronger than 1 Jy in the 5-year WMAP catalogue and with declinations north of -34 degrees. The observations were motivated by the need to know the polarization properties of radio sources at frequencies of tens of GHz in order to subtract polarized foregrounds for future sensitive Cosmic Microwave Background (CMB) experiments. The total intensity and polarization measurements are generally consistent with comparable VLA calibration measurements for less-variable sources, and within a similar range to WMAP fluxes for unresolved sources. A further paper will present correlations between measured parameters and derive implications for CMB measurements.
67 - A. A. Miller 2020
We present an update to the PanSTARRS-1 Point Source Catalog (PS1 PSC), which provides morphological classifications of PS1 sources. The original PS1 PSC adopted stringent detection criteria that excluded hundreds of millions of PS1 sources from the PSC. Here, we adapt the supervised machine learning methods used to create the PS1 PSC and apply them to different photometric measurements that are more widely available, allowing us to add $sim$144 million new classifications while expanding the the total number of sources in PS1 PSC by $sim$10%. We find that the new methodology, which utilizes PS1 forced photometry, performs $sim$6-8% worse than the original method. This slight degradation in performance is offset by the overall increase in the size of the catalog. The PS1 PSC is used by time-domain surveys to filter transient alert streams by removing candidates coincident with point sources that are likely to be Galactic in origin. The addition of $sim$144 million new classifications to the PS1 PSC will improve the efficiency with which transients are discovered.
KM3NeT will be a network of deep-sea neutrino telescopes in the Mediterranean Sea. The KM3NeT/ARCA detector, to be installed at the Capo Passero site (Italy), is optimised for the detection of high-energy neutrinos of cosmic origin. Thanks to its geo graphical location on the Northern hemisphere, KM3NeT/ARCA can observe upgoing neutrinos from most of the Galactic Plane, including the Galactic Centre. Given its effective area and excellent pointing resolution, KM3NeT/ARCA will measure or significantly constrain the neutrino flux from potential astrophysical neutrino sources. At the same time, it will test flux predictions based on gamma-ray measurements and the assumption that the gamma-ray flux is of hadronic origin. Assuming this scenario, discovery potentials and sensitivities for a selected list of Galactic sources and to generic point sources with an $E^{-2}$ spectrum are presented. These spectra are assumed to be time independent. The results indicate that an observation with $3sigma$ significance is possible in about six years of operation for the most intense sources, such as Supernovae Remnants RX,J1713.7-3946 and Vela Jr. If no signal will be found during this time, the fraction of the gamma-ray flux coming from hadronic processes can be constrained to be below 50% for these two objects.
Detection of point sources in images is a fundamental operation in astrophysics, and is crucial for constraining population models of the underlying point sources or characterizing the background emission. Standard techniques fall short in the crowde d-field limit, losing sensitivity to faint sources and failing to track their covariance with close neighbors. We construct a Bayesian framework to perform inference of faint or overlapping point sources. The method involves probabilistic cataloging, where samples are taken from the posterior probability distribution of catalogs consistent with an observed photon count map. In order to validate our method we sample random catalogs of the gamma-ray sky in the direction of the North Galactic Pole (NGP) by binning the data in energy and Point Spread Function (PSF) classes. Using three energy bins spanning $0.3 - 1$, $1 - 3$ and $3 - 10$ GeV, we identify $270substack{+30 -10}$ point sources inside a $40^circ times 40^circ$ region around the NGP above our point-source inclusion limit of $3 times 10^{-11}$/cm$^2$/s/sr/GeV at the $1-3$ GeV energy bin. Modeling the flux distribution as a power law, we infer the slope to be $-1.92substack{+0.07 -0.05}$ and estimate the contribution of point sources to the total emission as $18substack{+2 -2}$%. These uncertainties in the flux distribution are fully marginalized over the number as well as the spatial and spectral properties of the unresolved point sources. This marginalization allows a robust test of whether the apparently isotropic emission in an image is due to unresolved point sources or of truly diffuse origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا