ترغب بنشر مسار تعليمي؟ اضغط هنا

Dominant K-theory and Integrable highest weight representations of Kac-Moody groups

299   0   0.0 ( 0 )
 نشر من قبل Nitu Kitchloo
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Nitu Kitchloo




اسأل ChatGPT حول البحث

We give a topological interpretation of the highest weight representations of Kac-Moody groups. Given the unitary form G of a Kac-Moody group (over C), we define a version of equivariant K-theory, K_G on the category of proper G-CW complexes. We then study Kac-Moody groups of compact type in detail (see Section 2 for definitions). In particular, we show that the Grothendieck group of integrable hightest weight representations of a Kac-Moody group G of compact type, maps isomorphically onto K_G^*(EG), where $EG$ is the classifying space of proper G-actions. For the affine case, this agrees very well with recent results of Freed-Hopkins-Teleman. We also explicitly compute K_G^*(EG) for Kac-Moody groups of extended compact type, which includes the Kac-Moody group E_{10}.



قيم البحث

اقرأ أيضاً

We consider epimorphisms from quantum minimal surface algebras onto involutroy subalgebras of split real simply-laced Kac-Moody algebras and provide examples of affine and finite type. We also provide epimorphisms onto such Kac-Moody algebras themsel ves, where reality of the construction is important. The results extend to the complex situation.
We use the theory of Clifford algebras and Vahlen groups to study Weyl groups of hyperbolic Kac-Moody algebras T_n^{++}, obtained by a process of double extension from a Cartan matrix of finite type T_n, whose corresponding generalized Cartan matrices are symmetric.
We consider the subalgebras of split real, non-twisted affine Kac-Moody Lie algebras that are fixed by the Chevalley involution. These infinite-dimensional Lie algebras are not of Kac-Moody type and admit finite-dimensional unfaithful representations . We exhibit a formulation of these algebras in terms of $mathbb{N}$-graded Lie algebras that allows the construction of a large class of representations using the techniques of induced representations. We study how these representations relate to previously established spinor representations as they arise in the theory of supergravity.
The family of Thom spectra $y(n)$ interpolate between the sphere spectrum and the mod two Eilenberg-MacLane spectrum. Computations of Mahowald, Ravenel, and Shick and the authors show that the $E_1$ ring spectrum $y(n)$ has chromatic complexity $n$. We show that topological periodic cyclic homology of $y(n)$ has chromatic complexity $n+1$. This gives evidence that topological periodic cyclic homology shifts chromatic height at all chromatic heights, supporting a variant of the Ausoni--Rognes red-shift conjecture. We also show that relative algebraic K-theory, topological cyclic homology, and topological negative cyclic homology of $y(n)$ at least preserve chromatic complexity.
Let R be a finitely generated commutative ring with 1, let A be an indecomposable 2-spherical generalized Cartan matrix of size at least 2 and M=M(A) the largest absolute value of a non-diagonal entry of A. We prove that there exists an integer n=n(A ) such that the Kac-Moody group G_A(R) has property (T) whenever R has no proper ideals of index less than n and all positive integers less than or equal to M are invertible in R.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا