ترغب بنشر مسار تعليمي؟ اضغط هنا

Flexible least squares for temporal data mining and statistical arbitrage

124   0   0.0 ( 0 )
 نشر من قبل Giovanni Montana
 تاريخ النشر 2007
  مجال البحث مالية الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of recent emerging applications call for studying data streams, potentially infinite flows of information updated in real-time. When multiple co-evolving data streams are observed, an important task is to determine how these streams depend on each other, accounting for dynamic dependence patterns without imposing any restrictive probabilistic law governing this dependence. In this paper we argue that flexible least squares (FLS), a penalized version of ordinary least squares that accommodates for time-varying regression coefficients, can be deployed successfully in this context. Our motivating application is statistical arbitrage, an investment strategy that exploits patterns detected in financial data streams. We demonstrate that FLS is algebraically equivalent to the well-known Kalman filter equations, and take advantage of this equivalence to gain a better understanding of FLS and suggest a more efficient algorithm. Promising experimental results obtained from a FLS-based algorithmic trading system for the S&P 500 Futures Index are reported.



قيم البحث

اقرأ أيضاً

Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a mo del for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.
This paper proposes a new estimator for selecting weights to average over least squares estimates obtained from a set of models. Our proposed estimator builds on the Mallows model average (MMA) estimator of Hansen (2007), but, unlike MMA, simultaneou sly controls for location bias and regression error through a common constant. We show that our proposed estimator-- the mean-shift Mallows model average (MSA) estimator-- is asymptotically optimal to the original MMA estimator in terms of mean squared error. A simulation study is presented, where we show that our proposed estimator uniformly outperforms the MMA estimator.
In this paper we develop a Bayesian procedure for estimating multivariate stochastic volatility (MSV) using state space models. A multiplicative model based on inverted Wishart and multivariate singular beta distributions is proposed for the evolutio n of the volatility, and a flexible sequential volatility updating is employed. Being computationally fast, the resulting estimation procedure is particularly suitable for on-line forecasting. Three performance measures are discussed in the context of model selection: the log-likelihood criterion, the mean of standardized one-step forecast errors, and sequential Bayes factors. Finally, the proposed methods are applied to a data set comprising eight exchange rates vis-a-vis the US dollar.
High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity and mechanisms underlying human health and disease. Large-scale metabolomics data, gen erated using targeted or nontargeted platforms, are increasingly more common. Appropriate statistical analysis of these complex high-dimensional data is critical for extracting meaningful results from such large-scale human metabolomics studies. Herein, we consider the main statistical analytical approaches that have been employed in human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we propose a step-by-step framework for pursuing statistical analyses of human metabolomics data. We discuss the range of options and potential approaches that may be employed at each stage of data management, analysis, and interpretation, and offer guidance on analytical considerations that are important for implementing an analysis workflow. Certain pervasive analytical challenges facing human metabolomics warrant ongoing research. Addressing these challenges will allow for more standardization in the field and lead to analytical advances in metabolomics investigations with the potential to elucidate novel mechanisms underlying human health and disease.
Temporal Difference learning or TD($lambda$) is a fundamental algorithm in the field of reinforcement learning. However, setting TDs $lambda$ parameter, which controls the timescale of TD updates, is generally left up to the practitioner. We formaliz e the $lambda$ selection problem as a bias-variance trade-off where the solution is the value of $lambda$ that leads to the smallest Mean Squared Value Error (MSVE). To solve this trade-off we suggest applying Leave-One-Trajectory-Out Cross-Validation (LOTO-CV) to search the space of $lambda$ values. Unfortunately, this approach is too computationally expensive for most practical applications. For Least Squares TD (LSTD) we show that LOTO-CV can be implemented efficiently to automatically tune $lambda$ and apply function optimization methods to efficiently search the space of $lambda$ values. The resulting algorithm, ALLSTD, is parameter free and our experiments demonstrate that ALLSTD is significantly computationally faster than the na{i}ve LOTO-CV implementation while achieving similar performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا