ﻻ يوجد ملخص باللغة العربية
The NA49 experiment has collected comprehensive data on particle production in nucleus-nucleus collisions over the whole SPS beam energies range, the critical energy domain where the expected phase transition to a deconfined phase is expected to occur. The latest results from Pb+Pb collisions between 20$A$ GeV and 158$A$ GeV on baryon stopping and light nuclei production as well as those for strange hyperons are presented. The measured data on $p$, $bar{p}$, $Lambda$, $bar{Lambda}$, $Xi^-$ and $bar{Xi}^+$ production were used to evaluate the rapidity distributions of net-baryons at SPS energies and to compare with the results from the AGS and the RHIC for central Pb+Pb (Au+Au) collisions. The dependence of the yield ratios and the inverse slope parameter of the $m_t$ spectra on the collision energy and centrality, and the mass number of the produced nuclei $^3He$, $t$, $d$ and $bar{d}$ are discussed within coalescence and statistical approaches. Analysis of the total multiplicity exhibits remarkable agreement between the measured yield for $^3He$ and those predicted by the statistical hadronization model. In addition, new results on $Lambda$ and $bar{Lambda}$ as well as $Xi^-$ production in minimum bias Pb+Pb reactions at 40$A$ GeV and 158$A$ GeV and central C+C, Si+Si and Pb+Pb collisions are presented. The system size dependence of the yields of these hyperons was analysed to determine the evolution of strangeness enhancement relative to elementary p+p collisions.
We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the chemical equil
Differential production cross sections of K$^-$ and K$^+$ mesons have been measured as function of the polar emission angle in Ni+Ni collisions at a beam energy of 1.93 AGeV. In near-central collisions, the spectral shapes and the widths of the rapid
Prompt photons produced in a hard reaction are not accompanied with any final state interaction, either energy loss or absorption. Therefore, besides the Cronin enhancement at medium transverse momenta pT and small isotopic corrections at larger pT,
A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model.
We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the strangeness pr