ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong collisionless damping of the low-velocity branch of electromagnetic wave in plasmas with Maxwellian-like electron velocity distribution function

138   0   0.0 ( 0 )
 نشر من قبل Viktor Soshnikov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. N. Soshnikov




اسأل ChatGPT حول البحث

After approximate replacing of Maxwellian distribution exponent with the rational polynomial fraction we have obtained precise analytical expression for and calculated the principal value of logarithmically divergent integral in the electron wave dispersion equation. At the same time our calculations have shown the presence of strong collisionless damping of the electromagnetic low-velocity (electron) wave in plasmas with Maxwellian-like electron velocity distribution function at some small, of the order of several per cents, differences from Maxwellian distribution in the main region of large electron densities, however due to the differences in the distribution tail, where electron density itself is negligibly small.



قيم البحث

اقرأ أيضاً

199 - V. N. Soshnikov 2008
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the unifor m collisionless plasmas with non-Maxwellian and Maxwellian-like electron energy distribution functions. One considered the most typical cases of both the delta-function type distribution function (the plasma stream with monochromatic electrons) and distribution functions, different from Maxwellian ones as with a surplus as well as with a shortage in the Maxwellian distribution function tail. It is shown that there are present for the considered cases both collisionless damping and also non-damping electron waves even in the case of non-Maxwellian distribution function.
62 - Hong Wang , Jiulin Du , Rui Huo 2021
The collision frequencies of electron-neutral-particle in the weakly ionized complex plasmas with the non-Maxwellian velocity distributions are studied. The average collision frequencies of electron-neutral-particle in the plasmas are derived accurat ely. We find that these collision frequencies are significantly dependent on the power-law spectral indices of non-Maxwellian distribution functions and so they are generally different from the collision frequencies in the plasmas with a Maxwellian velocity distribution, which will affect the transport properties of the charged particles in the plasmas. Numerically analyses are made to show the roles of the spectral indices in the average collision frequencies respectively.
We present techniques to perturb, measure and model the ion velocity distribution in an ultracold neutral plasma produced by photoionization of strontium atoms. By optical pumping with circularly polarized light we promote ions with certain velocitie s to a different spin ground state, and probe the resulting perturbed velocity distribution through laser-induced fluorescence spectroscopy. We discuss various approaches to extract the velocity distribution from our measured spectra, and assess their quality through comparisons with molecular dynamic simulations
We present the first laboratory observations of time-resolved electron and ion velocity distributions in forming, magnetized collisionless shocks. Thomson scattering of a probe laser beam was used to observe the interaction of a laser-driven, superso nic piston plasma expanding through a magnetized ambient plasma. From the Thomson-scattered spectra we measure time-resolved profiles of electron density, temperature, and ion flow speed, as well as spatially-resolved magnetic fields from proton radiography. We observe direct evidence of the sweeping up and acceleration of ambient ions, magnetic field compression, and the subsequent deformation of the piston ion flow, key steps in shock formation. Even before the shock has fully formed, we observe strong density compressions and electron heating associated with the pile up of piston ions. The results demonstrate that laboratory experiments can probe particle velocity distributions relevant to collisionless shocks, and thus complement similar measurements undertaken by spacecraft missions.
111 - V. N. Soshnikov 2007
It is shown in linear approximation that in the case of one-dimensional problem of transverse electron waves in a half-infinite slab of homogeneous Maxwellian collisionless plasma with the given boundary field frequency two wave branches of solution of the dispersion equation are simultaneously realizing. These are the branch of fast forward waves determined mainly by Maxwell equations of electromagnetic field, as well as the branch of forward and backward slow waves determined in the whole by kinetic properties of electrons in the collective electrical field. The physical nature of wave movements is revealed. A relation is found between electric field amplitudes of fast and slow waves. Multiform dividing the coupled slow waves into standing and traveling parts leads to a necessity of additional requirements to a selection of the type of a device analyzing these waves and its response interpretation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا