ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxide-apertured microcavity single-photon emitting diode

297   0   0.0 ( 0 )
 نشر من قبل Anthony Bennett
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a microcavity single-photon source based on a single quantum dot within a planar cavity in which wet-oxidation of a high-aluminium content layer provides lateral confinement of both the photonic mode and the injection current. Lateral confinement of the optical mode in optically pumped structures produces a strong enhancement of the radiative decay rate. Using microcavity structures with doped contact layers, we demonstrate a single-photon emitting diode where current may be injected into a single dot.

قيم البحث

اقرأ أيضاً

Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with qua ntum functionalities make silicon carbide (SiC) an ideal material to build such devices. Here, we demonstrate the fabrication of bright single photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of $>$300 kHz), and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single photon source is proposed. These results provide a foundation for the large scale integration of single photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.
Single-photon sources are essential building blocks in quantum photonic networks, where quantum-mechanical properties of photons are utilised to achieve quantum technologies such as quantum cryptography and quantum computing. Most conventional solid- state single-photon sources are based on single emitters such as self-assembled quantum dots, which are created at random locations and require spectral filtering. These issues hinder the integration of a single-photon source into a scaleable photonic quantum network for applications such as on-chip photonic quantum processors. In this work, using only regular lithography techniques on a conventional GaAs quantum well, we realise an electrically triggered single-photon source with a GHz repetition rate and without the need for spectral filtering. In this device, a single electron is carried in the potential minimum of a surface acoustic wave (SAW) and is transported to a region of holes to form an exciton. The exciton then decays and creates a single photon in a lifetime of ~ 100ps. This SAW-driven electroluminescence (EL) yields photon antibunching with $g^{(2)}(0) = 0.39 pm 0.05$, which satisfies the common criterion for a single-photon source $g^{(2)}(0) < 0.5$. Furthermore, we estimate that if a photon detector receives a SAW-driven EL signal within one SAW period, this signal has a 79%-90% chance of being a single photon. This work shows that a single-photon source can be made by combining single-electron transport and a lateral n-i-p junction. This approach makes it possible to create multiple synchronised single-photon sources at chosen positions with photon energy determined by quantum-well thickness. Compared with conventional quantum-dot-based single-photon sources, this device may be more suitable for an on-chip integrated photonic quantum network.
We demonstrate Cooper-pairs drastic enhancement effect on band-to-band radiative recombination in a semiconductor. Electron Cooper pairs injected from a superconducting electrode into an active layer by the proximity effect recombine with holes injec ted from a p-type electrode and dramatically accelerate the photon generation rates of a light emitting diode in the optical-fiber communication band. Cooper pairs are the condensation of electrons at a spin-singlet quantum state and this condensation leads to the observed enhancement of the electric-dipole transitions. Our results indicate the possibility to open up new interdisciplinary fields between superconductivity and optoelectronics.
We report direct evidence of enhanced spontaneous emission in a photonic crystal (PhC) light-emitting diode. The device consists of p-i-n heterojunction embedded in a suspended membrane, comprising a layer of self-assembled quantum dots. Current is i njected laterally from the periphery to the center of the PhC. A well-isolated emission peak at 1300nm from the PhC cavity mode is observed, and the enhancement of the spontaneous emission rate is clearly evidenced by time-resolved electroluminescence measurements, showing that our diode switches off in a time shorter than the bulk radiative and nonradiative lifetimes
We present a detailed experimental characterization of the spectral and spatial structure of the confined optical modes for oxide-apertured micropillar cavities, showing good-quality Hermite-Gaussian profiles, easily mode-matched to external fields. We further derive a relation between the frequency splitting of the transverse modes and the expected Purcell factor. Finally, we describe a technique to retrieve the profile of the confining refractive index distribution from the spatial profiles of the modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا