ﻻ يوجد ملخص باللغة العربية
Parallel to the construction of gauge invariant spin and orbital angular momentum for QED in paper (I) of this series, we present here an analogous but non-trivial solution for QCD. Explicitly gauge invariant spin and orbital angular momentum operators of quarks and gluons are obtained. This was previously thought to be an impossible task, and opens a more promising avenue towards the understanding of the nucleon spin structure.
This two-paper series addresses and fixes the long-standing gauge invariance problem of angular momentum in gauge theories. This QED part reveals: 1) The spin and orbital angular momenta of electrons and photons can all be consistently defined gauge
A theoretical prediction is given for the spin and orbital angular momentum distribution functions of the nucleon within the framework of an effective quark model of QCD, i.e. the chiral quark soliton model. An outstanding feature of the model is tha
We develop a general framework to analyze the two important and much discussed questions concerning (a) `orbital and `spin angular momentum carried by light and (b) the paraxial approximation of the free Maxwell system both in the classical as well a
We determine within lattice QCD, the nucleon spin carried by valence and sea quarks, and gluons. The calculation is performed using an ensemble of gauge configurations with two degenerate light quarks with mass fixed to approximately reproduce the ph
We calculate the leading-twist helicity-dependent generalized parton distributions (GPDs) of the proton at finite skewness in the Nambu--Jona-Lasinio (NJL) model of quantum chromodynamics (QCD). From these (and previously calculated helicity-independ