ترغب بنشر مسار تعليمي؟ اضغط هنا

The Luminosity Function of Low-Redshift Abell Galaxy Clusters

281   0   0.0 ( 0 )
 نشر من قبل Wayne Barkhouse
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results from a survey of 57 low-redshift Abell galaxy clusters to study the radial dependence of the luminosity function (LF). The dynamical radius of each cluster, r200, was estimated from the photometric measurement of cluster richness, Bgc. The shape of the LFs are found to correlate with radius such that the faint-end slope, alpha, is generally steeper on the cluster outskirts. The sum of two Schechter functions provides a more adequate fit to the composite LFs than a single Schechter function. LFs based on the selection of red and blue galaxies are bimodal in appearance. The red LFs are generally flat for -22 < M_Rc < -18, with a radius-dependent steepening of alpha for M_Rc > -18. The blue LFs contain a larger contribution from faint galaxies than the red LFs. The blue LFs have a rising faint-end component (alpha ~ -1.7) for M_Rc > -21, with a weaker dependence on radius than the red LFs. The dispersion of M* was determined to be 0.31 mag, which is comparable to the median measurement uncertainty of 0.38 mag. This suggests that the bright-end of the LF is universal in shape at the 0.3 mag level. We find that M* is not correlated with cluster richness when using a common dynamical radius. Also, we find that M* is weakly correlated with BM-type such that later BM-type clusters have a brighter M*. A correlation between M* and radius was found for the red and blue galaxies such that M* fades towards the cluster center.



قيم البحث

اقرأ أيضاً

We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (fb) to investigate the clustercentr ic radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r200 to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (Bgc), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The fb is found not to correlate with Bgc; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy fb is approximately constant with clustercentric radius except for the inner cluster core region where fb decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction, indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.
We present a new deep spectroscopic catalogue for Abell 85, within 3.0 $times$ 2.6 Mpc$^2$ and down to $M_{r} sim M_{r}^* +6$. Using the Visible Multi-Object Spectrograph at the Very Large Telescope (VIMOS@VLT) and the AutoFiber 2 at the William Hers chel Telescope (AF2@WHT), we obtained almost 1,430 new redshifts for galaxies with $m_r leq 21$ mag and $langle mu_{e,r} rangle leq 24$ mag arcsec$^{-2}$. These redshifts, together with SDSS-DR6 and NED spectroscopic information, result in 460 confirmed cluster members. This dataset allows the study of the luminosity function (LF) of the cluster galaxies covering three orders of magnitudes in luminosities. The total and radial LFs are best modelled by a double Schechter function. The normalized LFs show that their bright ($M_{r} leq -21.5$) and faint ($M_{r}geq -18.0$) ends are independent of clustercentric distance and similar to the field LFs unlike the intermediate luminosity range ($-21.5 leq M_{r} leq -18.0$). Similar results are found for the LFs of the dominant types of galaxies: red, passive, virialized and early-infall members. On the contrary, the LFs of blue, star forming, non-virialized and recent-infall galaxies are well described by a single Schechter function. These populations contribute to a small fraction of the galaxy density in the innermost cluster region. However, in the outskirts of the cluster, they have similar densities to red, passive, virialized and early-infall members at the LF faint end. These results confirm a clear dependence of the colour and star formation of Abell 85 members in the cluster centric distance.
We present measurements of the FUV (1530A) and NUV (2310A) galaxy luminosity functions (LF) at low redshift (z<0.2) from GALEX observations matched to the 2dF Galaxy Redshift Survey. We split our FUV and NUV samples into two UV-bj color bins and two redshift bins. As observed at optical wavelengths, the local LF of the bluest galaxies tend to have steeper faint end slopes and fainter characteristic magnitudes M* than the reddest subsamples. We find evidence for color dependent evolution at very low redshift in both bands, with bright blue galaxies becoming dominant in the highest redshift bin. The evolution of the total LF is consistent with an 0.3 magnitude brightening between z=0 and 0.13, in agreement with the first analysis of deeper GALEX fields probing adjacent and higher redshifts.
51 - Neil Trentham 1997
We present the results from a CCD survey of the B-band luminosity functions of 9 nine clusters of galaxies, and compare them with published photographic luminosity functions of nearby poor clusters like Virgo and Fornax and also to the field luminosi ty function. We derive a composite luminosity function by taking the weighted mean of all the individual cluster luminosity functions; this composite luminosity function is steep at bright and faint magnitudes and is shallow in-between. All clusters have luminosity functions consistent with this single composite function. This is true both for rich clusters like Coma and for poor clusters like Virgo. This same composite function is also individually consistent with the deep field luminosity functions of Cowie et al. (1996) and Ellis et al. (1996), and also with the faint-end of the Las Campanas Redshift Survey R-band luminosity function, shifted by 1.5 magnitudes. A comparison with the Loveday et al. (1992) field luminosity function which is well-determined at the bright-end, shows that the composite function that fits the field data well fainter than $M_B = -19$ drops too steeply between $M_B = -19$ and $M_B = -22$ to fit the field data there well.
314 - G. Boue , F. Durret (1 2007
We investigate the LF in the very relaxed cluster Abell 496. Our analysis is based on deep images obtained at CFHT with MegaPrime/MegaCam in four bands (ugri) covering a 1x1 deg2 region, which is centered on the cluster Abell 496 and extends to near its virial radius. The LFs are estimated by statistically subtracting a reference field taken as the mean of the 4 Deep fields of the CFHTLS survey. Background contamination is minimized by cutting out galaxies redder than the observed Red Sequence in the g-i versus i colour-magnitude diagram. In Abell 496, the global LFs show a faint-end slope alpha=-1.55+/-0.06 and vary little with observing band. Without colour cuts, the LFs are much noisier but not significantly steeper. The faint-end slopes show a statistically significant steepening from alpha=-1.4+/-0.1 in the central region (extending to half a virial radius) to -1.8+/-0.1 in the Southern envelope of the cluster. Cosmic variance and uncertain star-galaxy separation are our main limiting factors in measuring the faint-end of the LFs. The large-scale environment of Abell 496, probed with the fairly complete 6dFGS catalogue, shows a statistically significant 36 Mpc long filament at PA=137 deg, but we do not find an enhanced LF along this axis. Our LFs do not display the large number of dwarf galaxies (alpha ~ -2) inferred by several authors, whose analyses may suffer from field contamination caused by inexistent or inadequate colour cuts. Alternatively, different clusters may have different faint-end slopes, but this is hard to reconcile with the wide range of slopes found for given clusters and for wide sets of clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا