ﻻ يوجد ملخص باللغة العربية
We numerically simulate vortex nucleation in a Bose-Einstein Condensate (BEC) subject to an effective magnetic field. The effective magnetic field is generated from the interplay between light with a non-trivial phase structure and the BEC, and can be shaped and controlled by appropriate modifications to the phase and intensity of the light. We demonstrate that the nucleation of vortices is seeded by instabilities in surface excitations which are coupled to by an asymmetric trapping potential (similar to the case of condensates subject to mechanical rotation) and show that this picture also holds when the applied effective magnetic field is not homogeneous. The eventual configuration of vortices in the cloud depends on the geometry of the applied field.
We have investigated the formation of vortices by rotating the purely magnetic potential confining a Bose-Einstein condensate. We modified the bias field of an axially symmetric TOP trap to create an elliptical potential that rotates in the radial pl
We have theoretically studied vortex waves of Bose-Einstein condensates in elongated harmonic traps. Our focus is on the axisymmetric varicose waves and helical Kelvin waves of singly quantized vortex lines. Growth and decay dynamics of both types of
We discuss the application of Bose-Einstein condensates (BECs) as sensors for magnetic and electric fields. In an experimental demonstration we have brought one-dimensional BECs close to micro-fabricated wires on an atom chip and thereby reached a se
Engineering of synthetic magnetic flux in Bose-Einstein condensates [Lin et al., Nature {bf 462}, 628 (2009)] has prospects for attaining the high vortex densities necessary to emulate the fractional quantum Hall effect. We analytically establish the
In a numerical experiment based on Gross-Pitaevskii formalism, we demonstrate unique topological quantum coherence in optically trapped Bose-Einstein condensates (BECs). Exploring the fact that vortices in rotating BEC can be pinned by a geometric ar