ﻻ يوجد ملخص باللغة العربية
Distributed Orthogonal Space-Time Block Codes (DOSTBCs) achieving full diversity order and single-symbol ML decodability have been introduced recently for cooperative networks and an upper-bound on the maximal rate of such codes along with code constructions has been presented. In this report, we introduce a new class of Distributed STBCs called Semi-orthogonal Precoded Distributed Single-Symbol Decodable STBCs (S-PDSSDC) wherein, the source performs co-ordinate interleaving of information symbols appropriately before transmitting it to all the relays. It is shown that DOSTBCs are a special case of S-PDSSDCs. A special class of S-PDSSDCs having diagonal covariance matrix at the destination is studied and an upper bound on the maximal rate of such codes is derived. The bounds obtained are approximately twice larger than that of the DOSTBCs. A systematic construction of S-PDSSDCs is presented when the number of relays $K geq 4$. The constructed codes are shown to achieve the upper-bound on the rate when $K$ is of the form 0 modulo 4 or 3 modulo 4. For the rest of the values of $K$, the constructed codes are shown to have rates higher than that of DOSTBCs. It is also shown that S-PDSSDCs cannot be constructed with any form of linear processing at the relays when the source doesnt perform co-ordinate interleaving of the information symbols.
Recently, a special class of complex designs called Training-Embedded Complex Orthogonal Designs (TE-CODs) has been introduced to construct single-symbol Maximum Likelihood (ML) decodable (SSD) distributed space-time block codes (DSTBCs) for two-hop
Achievable rate regions for cooperative relay broadcast channels with rate-limited feedback are proposed. Specifically, we consider two-receiver memoryless broadcast channels where each receiver sends feedback signals to the transmitter through a noi
Beam-Hopping (BH) and precoding are two trending technologies for the satellite community. While BH enables flexibility to adapt the offered capacity to the heterogeneous demand, precoding aims at boosting the spectral efficiency. In this paper, we c
In this paper, we propose textit{selectively precoded polar (SPP) code}, built on top of Arikans capacity achieving polar codes. We provide the encoding and decoding scheme for SPP code. Simulation results show that for a target frame erasure rate (F
In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D li