ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Khovanov and knot Floer homologies of quasi-alternating links

107   0   0.0 ( 0 )
 نشر من قبل Ciprian Manolescu
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasi-alternating links are a natural generalization of alternating links. In this paper, we show that quasi-alternating links are homologically thin for both Khovanov homology and knot Floer homology. In particular, their bigraded homology groups are determined by the signature of the link, together with the Euler characteristic of the respective homology (i.e. the Jones or the Alexander polynomial). The proofs use the exact triangles relating the homology of a link with the homologies of its two resolutions at a crossing.

قيم البحث

اقرأ أيضاً

We introduce a class of links strictly containing quasi-alternating links for which mod 2 reduced Khovanov homology is always thin. We compute the framed instanton homology for double branched covers of such links. Aligning certain dotted markings on a link with bundle data over the branched cover, we also provide many computations of framed instanton homology in the presence of a non-trivial real 3-plane bundle. We discuss evidence for a spectral sequence from the twisted Khovanov homology of a link with mod 2 coefficients to the framed instanton homology of the double branched cover. We also discuss the relevant mod 4 gradings.
247 - Eaman Eftekhary 2015
We obtain a formula for the Heegaard Floer homology (hat theory) of the three-manifold $Y(K_1,K_2)$ obtained by splicing the complements of the knots $K_isubset Y_i$, $i=1,2$, in terms of the knot Floer homology of $K_1$ and $K_2$. We also present a few applications. If $h_n^i$ denotes the rank of the Heegaard Floer group $widehat{mathrm{HFK}}$ for the knot obtained by $n$-surgery over $K_i$ we show that the rank of $widehat{mathrm{HF}}(Y(K_1,K_2))$ is bounded below by $$big|(h_infty^1-h_1^1)(h_infty^2-h_1^2)- (h_0^1-h_1^1)(h_0^2-h_1^2)big|.$$ We also show that if splicing the complement of a knot $Ksubset Y$ with the trefoil complements gives a homology sphere $L$-space then $K$ is trivial and $Y$ is a homology sphere $L$-space.
Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as th e three-manifold undergoes Dehn surgery along a knot. Since its original definition, thanks to the contributions of many researchers, knot Floer homology has emerged as a useful tool for studying knots in its own right. We give here a few selected highlights of this theory, and then move on to some new algebraic developments in the computation of knot Floer homology.
Knot Floer homology is a knot invariant defined using holomorphic curves. In more recent work, taking cues from bordered Floer homology,the authors described another knot invariant, called bordered knot Floer homology, which has an explicit algebraic and combinatorial construction. In the present paper, we extend the holomorphic theory to bordered Heegaard diagrams for partial knot projections, and establish a pairing result for gluing such diagrams, in the spirit of the pairing theorem of bordered Floer homology. After making some model calculations, we obtain an identification of a variant of knot Floer homology with its algebraically defined relative. These results give a fast algorithm for computing knot Floer homology.
We develop a skein exact sequence for knot Floer homology, involving singular knots. This leads to an explicit, algebraic description of knot Floer homology in terms of a braid projection of the knot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا