ترغب بنشر مسار تعليمي؟ اضغط هنا

Confirming the Detection of an Intergalactic X-ray Absorber Toward PKS 2155-304

63   0   0.0 ( 0 )
 نشر من قبل Taotao Fang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new observations on PKS 2155-304 with the Chandra Low Energy Transmission Grating Spectrometer (LETG), using the Advanced CCD Imaging Spectrometer (ACIS). We confirm the detection of an absorption line plausibly identified as OVIII Ly-alpha from the warm-hot intergalactic medium associated with a small group of galaxies along the line of sight, as originally reported by Fang et al. 2002 (here after FANG02). Combining the previous observations in FANG02 and five new, long observations on the same target, we increase the total exposure time by a factor of three, and the total counts per resolution element by a factor of five. The measured line equivalent width is smaller than that observed in FANG02, but still consistent at 90% confidence. We also analyze the XMM-Newton observations on the same target, as well as observations using the Chandra LETG and the High Resolution Camera (HRC) combination. These observations have been used to challenge our reported detection. While no line is seen in either the XMM-Newton and the Chandra LETG+HRC data, we find that our result is consistent with the upper limits from both data sets. We attribute the non-detection to (1) higher quality of the Chandra LETG+ACIS spectrum, and (2) the rather extended wings of the line spread functions of both the XMM RGS and the Chandra LETG+HRC. We discuss the implication of our observation on the temperature and density of the absorber. We also confirm the detection of z ~ 0 OVII absorption and, comparing with previous Chandra analysis, we obtain much tighter constraints on the line properties.

قيم البحث

اقرأ أيضاً

128 - F. Aharonian , et al. 2007
The high-frequency peaked BL Lac PKS 2155-304 at redshift z=0.116 is a well-known VHE (>100 GeV) gamma-ray emitter. Since 2002 its VHE flux has been monitored using the H.E.S.S. stereoscopic array of imaging atmospheric-Cherenkov telescopes in Namibi a. During the July 2006 dark period, the average VHE flux was measured to be more than ten times typical values observed from the object. This article focuses solely on an extreme gamma-ray outburst detected in the early hours of July 28, 2006 (MJD 53944). The average flux observed during this outburst is I(>200 GeV) = (1.72$pm$$0.05_{rm stat}$$pm$$0.34_{rm syst}$) $times$ 10$^{-9}$ cm$^{-2}$ s$^{-1}$, corresponding to ~7 times the flux, I(>200 GeV), observed from the Crab Nebula. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10$^9 M_odot$ black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.
AIMS: Our goal is to understand the nature of blazars and the mechanisms for the generation of high-energy gamma-rays, through the investigation of the prototypical blazar PKS 2155-304, which shows complex behaviour. METHODS: We analyze simultaneous infrared-to-X-ray observations obtained with XMM-Newton and REM on November 7, 2006, when the source was in a low X-ray state. We perform a comparative analysis of these results with those obtained from previous observations in different brightness states. RESULTS: We found that the peak of the synchrotron emission moved from ultraviolet to optical wavelengths and the X-ray spectrum is best fit with a broken power law model with Gamma_2 ~ 2.4 harder than Gamma_1 ~ 2.6 and a break at about 3.5 keV. This suggests that the soft X-rays (E < 3.5 keV) are related to the high-energy tail of the synchrotron emission, while the hard X-rays (E > 3.5 keV) are from the energy region between the synchrotron and inverse-Compton humps. The different variability at energies below and above the break strengthens this hypothesis. Our results also stress the importance of monitoring this source at both low and high energies to better characterize its variability behaviour.
The X-ray selected BL Lac PKS 2155-304 has been observed using the University of Durham Mark 6 very high energy gamma ray telescope during 1998. We find no evidence for TeV emission during these recent observations when the X-ray flux was observed to be low. We have reconsidered our measurements made in 1997 November when PKS 2155-304 was in a bright X-ray state and extended X-ray and GeV gamma ray observations were made as part of a multiwavelength campaign. Comparisons are made of the VHE emission during this time with the available data from other wavelengths.
Time variability of the photon flux is a known feature of active galactic nuclei (AGN) and in particular of blazars. The high frequency peaked BL Lac (HBL) object PKS 2155-304 is one of the brightest sources in the TeV band and has been monitored reg ularly with different instruments and in particular with the H.E.S.S. experiment above 200 GeV for more than 11 years. These data together with the observations of other instruments and monitoring programs like SMARTS (optical), Swift-XRT/RXTE/XMM-Newton (X-ray) and Fermi-LAT (100 MeV < E < 300 GeV) are used to characterize the variability of this object in the quiescent state over a wide energy range. Variability studies are made by looking at the lognormality of the light curves and at the fractional root mean square (rms) variability Fvar in several energy bands. Lognormality is found in every energy range and the evolution of Fvar with the energy shows a similar increase both in X-rays and in TeV bands.
We present theoretical modelling for the very rapid TeV variability of PKS 2155--304 observed recently by the H.E.S.S. experiment. To explain the light-curve, where at least five flaring events were well observed, we assume five independent component s of a jet that are characterized by slightly different physical parameters. An additional, significantly larger component is used to explain the emission of the source at long time scales. This component dominates the emission in the X-ray range, whereas the other components are dominant in the TeV range. The model used for our simulation describes precisely the evolution of the particle energy spectrum inside each component and takes into account light travel time effects. We show that a relatively simple synchrotron self-Compton scenario may explain this very rapid variability. Moreover, we find that absorption of the TeV emission inside the components due to the pair creation process is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا