ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature Coefficients of the Raman Peaks for the Single-Layer and Bi-Layer Graphene

242   0   0.0 ( 0 )
 نشر من قبل Alexander Balandin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out micro-Raman spectroscopy of graphene layers over the temperature range from approximately 80 K to 370 K. The number of layers was independently confirmed by the quantum Hall measurements and atomic force microscopy. The measured values of the temperature coefficients for the G and 2D-band frequencies of the single-layer graphene are -0.016 1/(cm K) and -0.034 1/(cm K), respectively. The G peak temperature coefficient of the bi-layer graphene and bulk graphite are -0.015 1/(cm K) and -0.011 1/(cm K), respectively.



قيم البحث

اقرأ أيضاً

We demonstrate anisotropic etching of single-layer graphene by thermally-activated nickel nanoparticles. Using this technique, we obtain sub-10nm nanoribbons and other graphene nanostructures with edges aligned along a single crystallographic directi on. We observe a new catalytic channeling behavior, whereby etched cuts do not intersect, resulting in continuously connected geometries. Raman spectroscopy and electronic measurements show that the quality of the graphene is resilient under the etching conditions, indicating that this method may serve as a powerful technique to produce graphene nanocircuits with well-defined crystallographic edges.
We present a detailed transmission electron microscopy and electron diffraction study of the thinnest possible membrane, a single layer of carbon atoms suspended in vacuum and attached only at its edges. Membranes consisting of two graphene layers ar e also reported. We find that the membranes exhibit an apparently random spontaneous curvature that is strongest in single-layer membranes. A direct visualization of the roughness is presented for two-layer membranes where we used the variation of diffracted intensities with the local orientation of the membrane.
Correct defect quantification in graphene samples is crucial both for fundamental and applied re-search. Raman spectroscopy represents the most widely used tool to identify defects in graphene. However, despite its extreme importance the relation bet ween the Raman features and the amount of defects in multilayered graphene samples has not been experimentally verified. In this study we intentionally created defects in single layer graphene, turbostratic bilayer graphene and Bernal stacked bilayer graphene by oxygen plasma. By employing isotopic labelling, our study reveals substantial differences of the effects of plasma treatment on individual layers in bilayer graphene with different stacking orders. In addition Raman spectroscopy evidences scattering of phonons in the bottom layer by defects in the top layer for Bernal-stacked samples, which can in general lead to overestimation of the number of defects by as much as a factor of two.
Conversion of pure spin current to charge current in single-layer graphene (SLG) is investigated by using spin pumping. Large-area SLG grown by chemical vapor deposition is used for the conversion. Efficient spin accumulation in SLG by spin pumping e nables observing an electromotive force produced by the inverse spin Hall effect (ISHE) of SLG. The spin Hall angle of SLG is estimated to be 6.1*10-7. The observed ISHE in SLG is ascribed to its non-negligible spin-orbit interaction in SLG.
When quantum flavor Hall insulator phases of itinerant fermions are disordered by strong quantum fluctuations, the condensation of skyrmion textures of order parameter fields can lead to superconductivity. In this work, we address the mechanism of sk yrmion condensation by considering the scattering between (2+1)-dimensional, Weyl fermions and hedgehog type tunneling configurations of order parameters that violate the skyrmion-number conservation law. We show the quantized, flavor Hall conductivity ($sigma^f_{xy}$) controls the degeneracy of topologically protected, fermion zero-modes, localized on hedgehogs, and the overlap between zero-mode eigenfunctions or t Hooft vertex determines the nature of pairing. We demonstrate the quantum-disordered, flavor Hall insulators with $sigma^f_{xy}= 2 N$ lead to different types of charge $2 N e^-$ superconductivity. Some implications for the competition among flavor Hall insulators, the charge $2e^-$ paired states in BCS and pair-density-wave channels, and the composite, charge $4e^-$ superconductors for twisted bilayer graphene are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا