ترغب بنشر مسار تعليمي؟ اضغط هنا

Resistance noise in Bi_2Sr_2CaCu_2O$_{8+delta}$

118   0   0.0 ( 0 )
 نشر من قبل Luc Fruchter
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The resistance noise in a Bi_2Sr_2CaCu_2O$_{8+delta}$ thin film is found to increase strongly in the underdoped regime. While the increase of the raw resistance noise with decreasing temperature appears to roughly track the previously reported pseudogap temperature for this material, standard noise analysis rather suggests that the additional noise contribution is driven by the proximity of the superconductor-insulator transition.

قيم البحث

اقرأ أيضاً

The {}^{17}O NMR spectra of Bi_2Sr_2CaCu_2O$_{8+delta}$ (Bi-2212) single crystals were measured in the temperature range from 4 K to 200 K and magnetic fields from 3 to 29 T, reported here principally at 8 T. The NMR linewidth of the oxygen in the Cu O_{2} plane was found to be magnetically broadened with the temperature dependence of a Curie law where the Curie coefficient decreases with increased doping. This inhomogeneous magnetism is an impurity effect intrinsic to oxygen doping and persists unmodified into the superconducting state.
In this paper we use London Langevin molecular dynamics simulations to investigate the vortex matter melting transition in the highly anisotropic high-temperature superconductor material Bi_2Sr_2CaCu_2O$_{8+delta}$ in the presence of low concentratio n of columnar defects (CDs). We reproduce with further details our previous results obtained by using Multilevel Monte Carlo simulations that showed that the melting of the nanocrystalline vortex matter occurs in two stages: a first stage melting into nanoliquid vortex matter and a second stage delocalization transition into a homogeneous liquid. Furthermore, we report on new dynamical measurements in the presence of a current that identifies clearly the irreversibility line and the second stage delocalization transition. In addition to CDs aligned along the c-axis we also simulate the case of tilted CDs which are aligned at an angle with respect to the applied magnetic field. Results for CDs tilted by $45^{circ}$ with respect to c-axis show that the locations of the melting and delocalization transitions are not affected by the tilt when the ratio of flux lines to CDs remains constant. On the other hand we argue that some dynamical properties and in particular the position of the irreversibility line should be affected.
We report on the temperature dependence of the impurity-induced resonant state in Zn-doped Bi_2Sr_2CaCu_2O$_{8+delta}$ by scanning tunneling spectroscopy at 30 mK < T < 52 K. It is known that a Zn impurity induces a sharp resonant peak in tunnel spec trum at an energy close to the Fermi level. We observed that the resonant peak survives up to 52 K. The peak broadens with increasing temperature, which is explained by the thermal effect. This result provides information to understand the origin of the resonant peak.
The 1/f resistance noise of a two-dimensional (2D) hole system in a high mobility GaAs quantum well has been measured on both sides of the 2D metal-insulator transition (MIT) at zero magnetic field (B=0), and deep in the insulating regime. The two me asurement methods used are described: I or V fixed, and measurement of resp. V or I fluctuations. The normalized noise magnitude SR/R^2 increases strongly when the hole density is decreased, and its temperature (T) dependence goes from a slight increase with T at the largest densities, to a strong decrease at low density. We find that the noise magnitude scales with the resistance, SR /R^2 ~ R^2.4. Such a scaling is expected for a second order phase transition or a percolation transition. The possible presence of such a transition is investigated by studying the dependence of the conductivity as a function of the density. This dependence is consistent with a critical behavior close to a critical density p* lower than the usual MIT critical density pc.
We report a c-axis-polarized electronic Raman scattering study of Bi_2Sr_2CaCu_2O_{8+delta} single crystals. In the normal state, a resonant electronic continuum extends to 1.5 eV and gains significant intensity as the incoming photon energy increase s. In the superconducting state, a coherence 2Delta peak appears around 50 meV, with a suppression of the scattering intensity at frequencies below the peak position. The peak energy, which is higher than that seen with in-plane polarizations, signifies distinctly different dynamics of quasiparticle excitations created with out-of-plane polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا